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Abstract
Dealing with additive noise in the i-vector space can be chal-
lenging due to the complexity of its effect in that space. Several
compensation techniques have been proposed in the last years
to either remove the noise effect by setting a noise model in
the i-vector space or build better scoring techniques that take
environment perturbations into account. We recently presented
a new efficient Bayesian cleaning technique operating in the i-
vector domain named I-MAP that improves the baseline system
performance by up to 60%. This technique is based on Gaussian
models for the clean and noise i-vectors distributions. After I-
MAP transformation, these hypothesis are probably less correct.
For this reason, we propose to apply another MMSE-based ap-
proach that uses the Kabsch algorithm. For a certain noise, it es-
timates the best translation vector and rotation matrix between a
set of train noisy i-vectors and their clean counterparts based on
RMSD criterion. This transformation is then applied on noisy
test i-vectors in order to remove the noise effect. We show that
applying the Kabsch algorithm allows to reach a 40% relative
improvement in EER(%) compared to a baseline system per-
formance and that, when combined with I-MAP and repeated
iteratively, it allows to reach 85% of relative improvement.

keywords: i-vector, additive noise, Kabsch algorithm, I-
MAP

1. Introduction
State of the art speaker recognition systems achieve high recog-
nition rates in clean environments but can suffer considerably
in presence of environment noise. Due to the number of factors
affecting the recognition decision and to the variety of noise
sources, a universal fast and efficient noise compensation tech-
nique is not yet available.

We recently presented a new efficient Bayesian clean-
ing technique operating in the i-vector domain named I-MAP
[1, 2, 3]. It is a ”data-driven” i-vector cleaning method based
on an additive noise model in the i-vector space. It estimates a
clean i-vector given its noisy version and the noise distribution
using MAP approach. It uses a full-covariance Gaussian model-
ing of the clean i-vectors and noise distributions in the i-vector
space. Even though the noise is known to be non-additive in
this space, using such model with a MAP estimator makes the
derivations very simple while giving up to 60% of relative im-
provement compared to the baseline system performance. Since
applying I-MAP does not guarantee that the Gaussianity hy-
pothesis is true for residual noise (thus we can’t use I-MAP
iteratively on noisy test data), we propose to complement this
technique by applying another MMSE-based approach that uses

the Kabsch algorithm. By doing so, we achieve two goals:
On one hand, we want to improve the recognition performance
of I-MAP by combining it with another algorithm that uses a
different optimization criterion (even though a Bayesian tech-
nique performs in general better than an MMSE-based algo-
rithm, combining the two can outperform each of the two).
On the other hand, we want to be able to use these techniques
(I-MAP+Kabsch) iteratively to achieve even better recognition
performance and remove the noise effect more efficiently while
using the same train data.

In this paper, we present a MMSE-based approach for noise
compensation in the i-vector space that complements I-MAP
using the Kabsch algorithm. Originally developed in chemin-
formatics to compare molecular structures [4, 5] and used in
bioinformatics to compare protein structures [6], the Kabsch al-
gorithm estimates the best translation vector and rotation matrix
between two paired sets of points based on root mean squared
deviation (RMSD) criterion. It is possible to use this algorithm
in a speaker recognition application by supposing that the ef-
fect of additive noise can be modeled in the i-vectors space by
a translation followed by a rotation. In this context, the algo-
rithm uses two paired sets of clean and noisy i-vectors affected
by a certain noise to estimate the best translation vector and
rotation matrix that transform the noisy i-vectors to their clean
counterparts. Once the translation vector and the rotation matrix
corresponding to a certain noise are estimated, the two transfor-
mations are applied on noisy test i-vectors in order to remove
the noise effect.

We show that using this algorithm allows to reach a 40%
relative improvement in EER(%) compared to a baseline sys-
tem performance. Since deriving a noise model in the i-vector
space based on its additive effect in the temporal domain is a
complex task due to the number of transformations included in
the i-vector extraction process [7], we will combine this algo-
rithm with I-MAP in a second experiment and show that using
the two techniques can achieve up to 80% of relative EER(%)
improvement. Then, we will show that these two algorithms (I-
MAP+Kabsch) complement each other and that applying them
iteratively can yield i-vectors of better quality achieving up to
85% or relative EER(%) improvement.

This paper is structured as follows: Section 2 compares dif-
ferent noise compensation techniques used in speaker recogni-
tion (SR) systems. Section 3 presents a new noise compensation
technique operating in the i-vector space based on the Kabsch
algorithm. Section 4 presents the I-MAP denoising procedure.
Finally, Section 5 presents the experimental protocol, the con-
ducted experiments and analyses the findings of this paper.
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2. Robust speaker recognition in noisy
conditions

In order to build robust speaker recognition (SR) systems, dif-
ferent approaches, operating in different domains, have been
proposed:

In the temporal domain, spectral and wavelet-based speech
enhancement techniques were proven to be noise and SNR
level-dependent and can either degrade or improve the recog-
nition performance depending on the environment noise [8,
9]. Different speech enhancement algorithms based on non-
negative matrix factorization (NMF) have also been developed
for speech-based applications [10, 11] and have been proven
to better model non-stationary noise. Despite its consistency
(the algorithm does not degrade the recognition performance
compared to algorithms described in [8, 9]), the relative im-
provement in recognition performance reached by NMF in a
speaker recognition context [12] is relatively low compared to
other methods (10% of relative improvement in EER(%)).

On a feature level, new robust representations have been
proposed lately for robust speaker recognition such as Resid-
ual Phase Cepstrum Coefficients (RPCC) [13], Generalized per-
ceptual features (GFCC) [14], Cosine Distance Features (CDF)
[15], combined formants, wavelets, and neural network fea-
tures (FWENN) [16], modulation filtering of autoregressive
models [17] and Convolutive Sparse Coding of speech spectro-
grams [18]. In such representations, a relative improvement of
EER(%) that varies between 5% and 27% is observed.

Several stochastic compensation techniques in the cepstral
domain (such as Trajectory-based stochastic mapping Map-
ping (TRAJMAP) [19] and Stereo Stochastic Mapping (SSM)
[20]) were recently tested in [21] and achieved high recogni-
tion rates in noisy environments. But such algorithms assume
prior knowledge about the test noise (stereophonic data are used
to train two UBM models in parallel: the first is trained using
clean frames while the second represents noisy frames. The re-
lationship between the two UBMs (for each Gaussian) is then
used to perform the denoising of test frames).

With the rise of deep learning in the last few years, neu-
ral networks were successfully used in a large range of tasks
including speech recognition [22, 23, 24, 25], facial recogni-
tion [26, 27] and object recognition [28, 29] before being ap-
plied to speaker recognition. Different architectures were used
to either estimate more robust i-vector statistics or compensate
noisy features. In [30], a convolutional neural network (CNN)
was used to compute posterior probabilities for speech frames
replacing the UBM model and has been shown to produce more
robust i-vector statistics. In [31], a deep neural network (DNN)
was trained to classify speakers based on speech frames. Then
during speaker enrollment, the trained DNN is used to extract
speaker specific features from the last hidden layer. For each ut-
terance, the average of activations derived from the last hidden
layer is used as speaker model. In [32], a DNN is used to en-
hance cepstral features before extracting i-vectors. In this sys-
tem, the DNN is trained from parallel data of clean and noise-
corrupted speech which are aligned in the frame level. Deep
learning techniques achieve on average a relative improvement
of EER up to 30% in noisy conditions.

On a model level, a set of algorithms based on vector Tay-
lor series (VTS) were proposed in [33, 34] then developed using
”unscented transforms” [35]. Such algorithms use a non-linear
noise model in the cepstral domain and model the relationship
between clean and noisy cepstral coefficients. In the recognition
phase, the developed noise model is integrated in the i-vector

extractor to help estimate a ”cleaned-up” version of noisy i-
vectors. Despite their efficiency, such models are rigid and can
be hard to adapt (adding a normalization step or changing the
used parameters could mean to rewrite the whole technique).

In the scoring phase, a robust backend training called
”multi-style” was proposed in [36] as a possible solution to take
into the account for the effect of noise. This method uses a
large set of clean and noisy data (affected with different noises
and SNR levels) to build a generic scoring model. The obtained
model gives good performance in general (up to 30% of relative
improvement) but still suboptimal to take into the account for
a particular noise because of its generalization (the same sys-
tem is used for all noises). Alternatively, another class of tech-
niques based on uncertainty propagation have also been pro-
posed lately for robust speaker recognition. Based on this idea,
a robust i-vector extractor was proposed in [37, 38] in order to
make the i-vector extraction system focus on reliable or reliably
enhanced features but showed little improvement compared to
other methods. Recently, an SNR-invariant version of PLDA
was proposed in [39]. In this framework, i-vectors extracted
from utterances falling within a narrow SNR range are assumed
to share similar SNR-specific information and used to develop
a more robust version of PLDA which decomposes an i-vector
in three components: speaker, SNR, and channel. This model
showed an average relative improvement of 25% in EER(%)
compared to regular PLDA.

In the next Section, we present a new denoising technique
operating in the i-vector space based on the Kabsch algorithm.

3. The Kabsch algorithm
Given two paired sets of points {xi}i=1..N and {yi}i=1..N de-
fined in an M -dimensional space where to each point xi in the
first set corresponds a unique point yi in the second (hence the
term ”paired” sets), it is possible to arrange the corresponding
coordinates in a matrix format as:

PX =




x1,1 x1,2 . . . x1,M
x2,1 x2,2 . . . x2,M

...
...

...
xN,1 xN,2 . . . xN,M


 (1)

PY =




y1,1 y1,2 . . . y1,M
y2,1 y2,2 . . . y2,M

...
...

...
yN,1 yN,2 . . . yN,M


 (2)

Given PX and PY , the orthogonal Procrustes problem is a
matrix approximation problem which aims at finding the best
orthogonal matrix R that maps PX to PY according to:

R = argmin
R
‖RPY − PX‖F (3)

where: RTR = IN and ‖.‖F denotes the Frobenius norm.
It is possible to constrain this problem by only allowing ro-

tation matrices (i.e. orthogonal matrices with determinant equal
to 1). In that context, the solution can be found using the Kab-
sch algorithm [4]. This algorithm allows to estimate the best
rotation matrix R which transforms the set {xi}i=1..N (PX )
onto {yi}i=1..N (PY ) based on root mean squared deviation
(RMSD) criterion.

In a speaker recognition context, we will use the Kabsch
algorithm to find, for a certain noise, the best rotation matrix R
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between a set of noisy i-vectors and their clean versions. By do-
ing so, it will be possible to apply the resultant transformation
to noisy test i-vector and recover a ”cleaned-up” version. The
algorithm starts with two sets of paired i-vectors represented
in a matrix format (clean i-vectors matrix PX corresponding
to {xi}i=1..N and noisy i-vectors matrix PY corresponding to
{yi}i=1..N where i-vectors are arranged by rows). The esti-
mated rotation matrixR will then characterize the noise present
in {yi}i=1..N .

The Kabsch algorithm allows to find the best rotation ma-
trix which transforms PY onto PX and follows three steps:

1. Both sets of points (PX and PY ) are translated so that
their centroid coincide with the origin of the coordinate
system.

2. The rotation matrix is estimated using the two centered
matrices (using SVD decomposition).

3. During the test phase, the rotation matrix is applied to
noisy test i-vectors.

Step 1: Translation of the two sets of points:
1. Computing the centroids of the clean and noisy sets of

i-vectors:

• PX = centroid(PX)

• PY = centroid(PY )

2. Centering all points of PX and PY around the origin of
the coordinate system:

• ˜PXi = PXi − PX for each row PXi of PX .

• ˜PY i = PY i − PY for each row PY i of PY .

Step 2: Estimation of the rotation matrix:

1. Estimation of a covariance matrix: A = P̃X
T
P̃Y

2. SVD decomposition of A: A = V SWT

3. Computing d = sign(det(WV T ))

4. Estimation of the rotation matrix R as:

R = W




1 0 . . . 0

0
. . . 0

... 1
...

0 . . . 0 d



V T (4)

Step 3: Application of the rotation on test data:

Given a set of noisy test i-vectors {ti}i=1..N :

1. Centering test i-vectors:
t̃i = ti − PY for all i in i = 1..N .

2. Rotating test i-vectors:
t̂i = Rt̃i + PX for all i in i = 1..N .

Then, the resultant i-vectors t̂i can be used with a clean
backend since they are supposed to be noise-free. It is impor-
tant to note that since the centroid PX is noise-independent,
it can be computed once in a off-line step over a large set of
clean i-vectors and used in all transformations involving differ-
ent noises / SNR levels. Also, in order to have a good estimate
of the covariance matrixA, we will be working in a setup where
M > N .

4. The I-MAP denoising procedure
In our previous work [1, 2, 3], we proposed an additive noise
model in the i-vector space obeying to the equation:

N = Y −X (5)

Where X and Y are two random variables representing respec-
tively clean and noisy i-vectors and N represents the noise.
Using full-covariance Gaussian distributions for both clean i-
vectors dX ∼ N (X;µX ,ΣX) and noise in the i-vector space
dN ∼ N (N ;µN ,ΣN ), it is possible to write the cleaned-
up version X̂0 of a noisy i-vector Y0 using MAP criterion as
[1, 2, 3]:

X̂0 = (Σ−1
N + Σ−1

X )−1(Σ−1
N (Y0 − µN ) + Σ−1

X µX) (6)

The derivation of Equation 6 is detailed in [1, 2, 3].

4.1. Estimation ofN (X;µX ,ΣX) andN (N ;µN ,ΣN )

As detailed in [1, 2], the clean i-vectors distribution
N (X;µX ,ΣX) and the noise distribution N (N ;µN ,ΣN ) are
two key components in the I-MAP procedure.

Since N (X;µX ,ΣX) is noise-independent, it can be esti-
mated once and for all over a large set of clean i-vectors in an
off-line step initially before performing any compensation.

On the other hand, N (N ;µN ,ΣN ) makes the system able
to adapt to the noise present in the signal and compensate its
effect more effectively. It is estimated for each different test
noise and it requires the existence of clean i-vectors and the
noisy versions corresponding to the same segments. First, for
the clean part and once the train set is fixed, the corresponding
clean i-vectors (X) are extracted. Then, for a given noisy test
segment, the noise is extracted from the signal (using a VAD
system and selecting the low-energy frames) then added to the
clean train set in the time domain. Finally, the corresponding
noisy i-vectors (Y ) are estimated and Equation (6) is used to
compute N then N (N ;µN ,ΣN ). The full algorithm is shown
in Figure 1 and more details about the technique can be found
in [2]. We also showed that the best performances are reached
when using clean train sessions (SNR > 25dB) with an aver-
age speech duration of 90 seconds. We will use a similar config-
uration in our experiments. In order to speed-up the algorithm
in unknown test conditions, it is possible to fix an SNR thresh-
old beyond which a session is considered clean and I-MAP is
not applied.

5. Experiments and results
5.1. Experimental protocol:

Throughout this paper, all conducted experiments operate on 19
Mel-Frequency Cepstral Coefficients (plus energy) augmented
with 19 first (∆) and 11 second (∆∆) derivatives. A mean
and variance normalization (MVN) technique is applied on the
MFCC features estimated using the speech portion of the audio
file (selected using an energy-based VAD). The low-energy
frames (corresponding mainly to silence) are removed.

Two SR systems are used in our experiments depending
of the speakers gender in enrollment/test data. Two gender-
dependent 512 diagonal component UBMs and total variabil-
ity matrices of low rank 400 are estimated using NIST SRE
2004, 2005, 2006 and Switchboard data. The male models
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Figure 1: I-vector cleaning procedure using I-MAP.

(male UBM and total variability matrix) were trained using
15660 utterances corresponding to 1147 speakers and the fe-
male models (female UBM and total variability matrix) were
trained using 24100 utterances corresponding to 2012 speak-
ers. The LIA SpkDet package of the LIA RAL/ALIZE toolkit
[40] is used for the estimation of the total variability matrix and
the i-vector extraction. The algorithms used are described in
[41]. Finally a two-covariance-based scoring [42] is applied.
The equal-error rate (EER) over the NIST SRE 2008 male test
data on the ”short2/short3” task under the ”det7” conditions (all
trials involving only English language telephone speech in train-
ing and test) [43] will be used as a reference to monitor the
performance improvement compared to the baseline system. In
clean ”det7” conditions, our system reachesEER = 1.59% on
male data and EER = 2.66% on female data.

In order to test the response to the developed techniques
in adverse environments, we used 3 noise samples (air-cooling
noise, crowd noise and car-driving noise) from the free sound
repository FreeSound.org [44] as background noises. The open-
source toolkit FaNT [45] was used to add these noises to in
the temporal domain generating new noisy audio files for each
noise / SNR level. All clean train data used in the our exper-
iments have an average speech duration of 90 seconds and an
SNR level greater than 25dB. Also, the SNR threashold used

Table 1: Recognition performance on male data in different test conditions using clean enrollment and noisy test data. The number of
iterations indicates how many times I-MAP and Kabsch are applied successively.

EER(%)

Test condition Baseline Kabsch I-MAP I-MAP + Kabsch
(1 iteration)

I-MAP + Kabsch
(2 iterations)

Air-cooling
noise

0dB 26.85 17.18 13.21 8.86 7.24
5dB 15.21 10.34 7.25 4.71 3.89

10dB 9.51 5.70 4.85 2.94 2.55
15dB 5.41 3.40 2.85 1.82 1.63

Car-driving
noise

0dB 25.54 15.83 12.05 7.91 6.37
5dB 14.54 9.30 6.65 3.63 3.04

10dB 8.32 5.15 3.78 1.99 1.82
15dB 4.82 3.22 2.36 1.79 1.65

Crowd
noise

0dB 24.24 16.48 11.55 8.24 6.78
5dB 13.94 9.20 5.09 4.18 3.62

10dB 7.77 5.20 3.05 2.02 1.81
15dB 4.01 2.52 2.02 1.84 1.63

Table 2: Recognition performance on female data in different test conditions using clean enrollment and noisy test data. The number
of iterations indicates how many times I-MAP and Kabsch are applied successively.

EER(%)

Test condition Baseline Kabsch I-MAP I-MAP + Kabsch
(1 iteration)

I-MAP + Kabsch
(2 iterations)

Air-cooling
noise

0dB 27.19 16.95 13.53 10.80 9.49
5dB 16.77 10.45 8.34 6.66 5.85

10dB 9.01 5.61 4.48 3.58 3.14
15dB 6.42 4.00 3.19 2.75 2.70

Car-driving
noise

0dB 24.82 15.47 12.35 9.86 8.66
5dB 14.90 9.28 7.41 5.92 5.20

10dB 8.65 5.39 4.30 3.43 3.02
15dB 5.89 3.67 3.12 2.95 2.74

Crowd
noise

0dB 25.44 15.85 12.66 10.11 8.88
5dB 14.37 8.95 7.15 5.71 5.01

10dB 8.77 5.46 4.36 3.48 3.06
15dB 5.78 3.60 3.04 2.92 2.81
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Table 3: Recognition performance on male data in different test conditions using noisy enrollment and test data. The number of
iterations indicates how many times I-MAP and Kabsch are applied successively.

EER(%)
Test & enrolment

condition Baseline Kabsch I-MAP I-MAP + Kabsch
(1 iteration)

I-MAP + Kabsch
(2 iterations)

Air-cooling
noise

0dB 35.06 22.08 15.42 8.36 6.76
5dB 28.47 17.65 13.09 7.25 6.13

10dB 23.68 15.86 13.02 5.92 4.73
15dB 18.14 11.60 9.43 3.99 3.44

Car-driving
noise

0dB 30.97 20.44 16.41 8.98 6.57
5dB 26.09 16.17 11.21 6.52 5.73

10dB 22.46 14.37 9.20 5.81 4.64
15dB 17.85 11.60 7.49 4.99 4.08

Crowd
noise

0dB 34.55 21.42 14.51 7.94 6.56
5dB 27.31 16.93 11.74 7.21 6.06

10dB 22.99 14.02 9.19 6.50 5.74
15dB 17.26 10.35 7.59 4.48 3.45

Table 4: Recognition performance on female data in different test conditions using noisy enrollment and test data. The number of
iterations indicates how many times I-MAP and Kabsch are applied successively.

EER(%)
Test & enrolment

condition Baseline Kabsch I-MAP I-MAP + Kabsch
(1 iteration)

I-MAP + Kabsch
(2 iterations)

Air-cooling
noise

0dB 36.10 22.50 14.00 9.65 8.27
5dB 28.89 18.00 11.20 7.72 6.62

10dB 24.12 15.02 9.35 6.45 5.53
15dB 19.24 11.98 7.46 5.14 4.41

Car-driving
noise

0dB 31.54 19.65 12.23 8.43 7.23
5dB 27.65 17.21 10.72 7.39 6.34

10dB 23.68 14.77 9.18 6.33 5.42
15dB 18.65 11.61 7.23 4.98 4.27

Crowd
noise

0dB 35.02 21.82 13.58 9.36 8.03
5dB 28.01 17.45 10.86 7.49 6.42

10dB 23.54 14.68 9.13 6.29 5.39
15dB 18.65 11.61 7.23 4.98 4.27

for I-MAP is equal to 25dB.
For I-MAP, the number of train i-vectors N needed to esti-

mate the noise distribution for each noise N (N ;µN ,ΣN ) was
investigated in [2]. We will useN = 500 in all our experiments
and the same set of train data will be used in the Kabsch algo-
rithm to compute the rotation matrix R and translation vector
PY corresponding to each noise.

5.2. Recognition performance using the Kabsch algorithm

The LIA speaker verification baseline system reaches an
EER=1.59% in clean conditions. We will compare five systems
performances in these experiments (a clean backend is used for
all systems):

• Baseline system: Noisy i-vectors used with the baseline
system.

• Kabsch algorithm: for each noise n / SNR level s:

1. A set of clean train audio segments are affected
with the noise n at sdB in the temporal domain.

2. The i-vectors corresponding to the resultant noisy
segments {yi}i=1..N and their clean counterparts
{xi}i=1..N are extracted.

3. Steps 1 and 2 of the Kabsch algorithm are applied
to {xi}i=1..N and {yi}i=1..N and both the trans-
lation vector PY and the rotation matrix R are es-
timated.

4. Step 3 of the Kabsch algorithm is applied on noisy
test i-vectors using R and PY .

• I-MAP + Kabsch algorithm (1 iteration): for each
noise n / SNR level s, the I-MAP transformation is ap-
plied to both noisy test and noisy train i-vectors, then the
Kabsch algorithm is applied:

1. A set of clean train audio segments are affected
with the noise n at sdB in the temporal domain.

2. The i-vectors corresponding to the resultant noisy
segments {yi}i=1..N and their clean counterparts
{xi}i=1..N are extracted.

3. Equation 5 is applied then the noise distribution
f(N) is estimated.

4. I-MAP is applied (Equation 6) to noisy test i-
vectors {ti}i=1..N (generating {ti

′}i=1..N ).

5. I-MAP is applied to the set of noisy train i-vectors
{yi}i=1..N (generating {yi

′}i=1..N ).
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6. Steps 1 and 2 of the Kabsch algorithm are applied
to {xi}i=1..N and {yi

′}i=1..N and both the trans-
lation vector PY

′ and the rotation matrix R are
estimated.

7. Step 3 of the Kabsch algorithm is applied to
the noisy test i-vectors transformed with I-MAP
({ti

′}i=1..N ) using R and PY
′ .

• I-MAP + Kabsch algorithm (2 iterations): The proce-
dure described in the pervious system is applied twice on
noisy test and train data.

The enrollment and test data have been altered using three
noises (air-cooling noise, car driving and crowd-noise) at 4 dif-
ferent SNR levels: 0dB, 5dB, 10dB and 15dB.

First, we present the system performance using clean en-
rollment data, then we compare them with the results obtained
in different noisy enrollment configurations.

5.2.1. System performance using clean enrollment and noisy
test data

For three different test noises (air-cooling noise, car-driving
noise and crowd noise), clean test data are corrupted in the
time domain and the corresponding i-vectors are evaluated
before and after the application of Kabsch, I-MAP and I-
MAP+Kabsch. Tables 1 and 2 show respectively the five sys-
tems performance on male and female data for different test
noises.

When the Kabsch algorithm is used, a relative improvement
range between 33% and 40% is observed, whereas the use of I-
MAP followed by the Kabsch algorithm gives a range of 65%
up to 85% of relative improvement compared to the baseline
system.

It is important to highlight the power behind the combina-
tion of these two techniques. Indeed, when the two algorithms
are compared separately, I-MAP performs better than Kabsch
due to its Bayesian nature. But using both algorithms (either
for one or many iterations) can be highly efficient since the two
algorithms use different optimization criteria (MAP for I-MAP
and RMSD for Kabsch), hence iteratively improving the qual-
ity of the cleaned-up i-vectors. Also, the application of I-MAP
produces residual noise that does not necessarily obey the Gaus-
sianity hypothesis (thus we can’t use I-MAP iteratively on noisy
test data). This problem can be corrected by the Kabsch algo-
rithm and can explain the good fit of the two techniques when
used more than once. Indeed, Table 1 shows that using the Kab-
sch algorithm after I-MAP (either for 1 or 2 iterations) is a good
combination and that it improves the recognition performance
achieving 85% of relative improvement compared to the base-
line system.

5.2.2. System performance using noisy enrollment and test
data

For three different test noises (air-cooling noise, car-driving
noise and crowd noise), clean test data are corrupted in the
time domain and the corresponding i-vectors are evaluated be-
fore and after the application of I-MAP. Tables 3 and 4 show
respectively the five systems performance for male and female
data when each one of the three noises are used to affect the test
data.

When the Kabsch algorithm is used, a relative improvement
range between 33% and 40% is observed, whereas the use of I-
MAP followed by the Kabsch algorithm gives a range of 65%

up to 83% of relative improvement compared to the baseline
system. This proves that combining the two techniques is till
efficient even when noisy enrollment i-vectors are used. Also,
using two iterations of I-MAP+Kabsch can fearther improve the
recognition performance.

5.2.3. System performance in a heterogeneous setup

We performed another experiment to prove the validity of our
technique in a situation where the noise level is varying ran-
domly between the enrollment/test segments. In this experi-
ment, all the speech files (for enrollment and test) are corrupted
by a random noise with a randomly-selected SNR level between
0dB to 20dB. As a result, each noisy session is affected by a
unique noise at a fixed SNR level. Table 5 shows the obtained
results with the five systems.

Table 5: Performance comparison in a heterogeneous setup for
male and female data.

EER (%)
Male Female

Baseline 29.65 31.02
Kabsch 18.78 19.95
I-MAP 16.27 17.46

I-MAP + Kabsch (1 iter.) 8.67 10.62
I-MAP + Kabsch (2 iter.) 7.39 9.28

It is easy to see that while the Kabsch algorithm and I-MAP
improve the recognition performance respectively by 36% and
45%, the combination of the two techniques allows to achieve
75% in an heterogeneous setup.

Even though these techniques (I-MAP and the Kabsch algo-
rithm) achieve high recognition rates in noisy environments, it
is worth noting that both algorithms are based on a set of paired
i-vectors (clean i-vectors and their noisy versions) and that gen-
erating these data for each noisy test session can be computa-
tionally expensive in a real SR system. A possible solution is to
build a noisy i-vector distribution database offline (using many
noises and SNR levels). Then, for each noisy test i-vector, se-
lect the closest distribution from database (using a likelihood
measure) and use it as train data for both I-MAP and Kabsch
algorithms. This system could be the subject of a future work.

6. Conclusion
In this paper, we introduced a new cleaning technique operating
in the i-vector space based on the Kabsch algorithm. We showed
that using this technique leads to a relative gain in EER(%) that
reaches 40% and that combining it with I-MAP allows to reach
85% of relative improvement.

For a given noise, we estimate the best translation vector
and rotation matrix between a set of train noisy i-vectors and
their clean counterparts based on RMSD criterion and show
that applying this transformation to noisy test i-vectors achieves
40% of relative improvement. Then, we combined this algo-
rithm with I-MAP, a recently proposed i-vector denoising tech-
nique and showed that using the two algorithms iteratively al-
lows to reach 85% of relative improvement in EER.
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