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Abstract
The Speech and Hearing Research Group of the University of
Sheffield submitted a fusion language recognition system to
NIST LRE 2015. It combines three language classifiers. Two
are acoustic-based, which use i–vectors and a tandem DNN lan-
guage recogniser respectively. The third classifier is a phono-
tactic language recogniser. Two sets of training data with du-
ration of approximately 170 and 300 hours were composed for
LR training. Using the larger set of training data, the primary
Sheffield LR system gives 32.44 min DCF on the official LR
2015 eval data. A post-evaluation system enhancement was car-
ried out where i–vectors were extracted from the bottleneck fea-
tures of an English DNN. The min DCF was reduced to 29.20.

1. Introduction
In a spoken language recognition (SLR) task, an automatic sys-
tem is used to infer the language identity of the given acoustic
signal [1]. The National Institute of Standards and Technology
(NIST) has conducted a number of evaluations of automatic lan-
guage recognition technology [2, 3, 4, 5]. In these evaluations,
benchmark test sets were distributed and the participants were
required to perform language detection, i.e. to accept or reject
the language identity hypothesis for a given speech segment.

Different information from a speech signal can be used to
identify the language. Classical SLR methods can be grouped
by the features they use. The two most popular SLR approaches
are acoustic-phonetic and phonotactic [6, 7, 8]. In the acoustic-
phonetic approach, low-level acoustic features such as Mel-
frequency cepstral coefficients (MFCC)[9], or shifted-delta cep-
stral coefficient (SDC)[10] were extracted, on which statistical
models such as Gaussian mixture models are trained to model
languages [11, 12]. In the phonotactic approach, an ASR-style
tokeniser is needed to convert the speech signal into lattices of
discrete tokens such as phonemes. The occurrence patterns of
these tokens conditioned on different target languages are then
modelled and language classifiers are constructed [6, 12, 13].

In recent years, the use of i-vectors [14, 15], deep neural
networks [16, 17] or the combination of the two [18] became
popular also for language recognition. The i-vector approach
uses low-dimension latent variables which could be understood
as the eigenvalues of the principle component of variations in
the high-dimensional supervector space. Deep neural networks
use non-linear transformation to represent structures directly re-
lated to language identity or indirect/auxiliary linguistic units
such as phonemes/senones.

This paper describes the Sheffield language recognition
system submitted to NIST LRE 2015. Recently NIST Language

recognition evaluations were held in 2011 and 2015 [19, 20].
These evaluations focus on languages that are similar to each
other and frequently mutually intelligible [20]. For NIST LRE
2015, twenty target languages in six language clusters, as shown
in Table 1, were tested. Only within-cluster language detec-
tion is performed. i.e. assume the cluster identity of the speech
is known, the automatic SLR is required to accept of reject a
particular language in the cluster considering other competitors
from the same cluster.

The Sheffield SLR system comprises three language clas-
sifiers. Two of them are acoustic and one of them is phono-
tactic. The acoustic system includes an i–vector based system
and a DNN classifier for language recognition and are intro-
duced in §5.1 and §5.2 respectively. The phonotactic system is
introduced in §5.3. After the formal evaluation period, an ex-
tra bottleneck i–vector system was constructed and tested. It
makes use of a DNN trained on conversational telephone data
for English phone classification, and extract the bottleneck fea-
ture, on which the i-vector extractor was trained on. A similar
setting was also shown in [18] as the best performing system
with DNN phone recogniser trained on English in a NIST LRE
2009 task.

The contribution of this paper is to describe the relative per-
formance of different language recognition techniques in NIST
LRE 2015, where target languages are highly confusable com-
pared with earlier NIST LRE data. All reported systems con-
formed to the Fixed Training Data condition, which is a new
requirement in the 2015 evaluation. In the following, an intro-
duction for the four systems will be given.

Table 1: Target languages in NIST LRE 2015
Cluster Target languages
Arabic Egyptian (ara-arz), Iraqi (ara-acm), Levantine (ara-apc),

Maghrebi (ara-ary), Modern Standard (ara-arb)
English British (eng-gbr), General American (eng-usg),

Indian (eng-sas)
French West African (fre-waf), Haitian Creole (fre-hat)
Slavic Polish (qsl-pol), Russian (qsl-rus)
Iberian Caribbean Spanish (spa-car), European Spanish (spa-eur),

Latin American Spanish (spa-lac),
Brazilian Portuguese (por-brz)

Chinese Cantonese (zho-yue), Mandarin (zho-cmn),
Min (zho-cdo), Wu (zho-wuu)

2. Data
Training and development data comes from four corpora,
namely Switchboard 1, Switchboard Cellular Part 2 and two
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Table 2: Speech / non–speech data distribution for VAD training
Duration

Dataset (Speech) (Non–speech)
Switchboard 1 210h 288h
VOA2 55h 61h
VOA3 93h 72h
Total 358h 421h

multi–lingual datasets (LDC2015E87, LDC2015E88) desig-
nated for LRE training [20]. The Switchboard 1 corpus comes
with phone-level alignments and was used for training the voice
activity detector (§3) and the tokeniser for the phonotactic lan-
guage recogniser (§5.3). The two Switchboard corpora are used
in the training of the universal background model (UBM) for
the i–vector based language recogniser (§5.1).

Broadcast narrowband speech (BNBS) data from VOA2
and VOA3 datasets from the LRE2009 training data were used
to supplement the Switchboard 1 telephone data in the training
of voice activity detector.

The first multi–lingual dataset (LDC2015E87) comprises
conversational telephone speech from the CallHome and Call-
Friend corpora in Egyptian Arabic, Standard Mandarin and
US English. The second multi–lingual dataset (LDC2015E88)
comprises data in seventeen other target languages in LRE
2015. The amount of data for different languages varies from
0.4 hours to 159 hours. Data is provided in NIST Sphere format.
For these two datasets, no annotations of speech / non–speech
or silence are provided. Voice activity detection and resegmen-
tation is performed. By varying the resegmentation parameters,
segments of different nominal durations (3, 10 or 30 seconds)
were extracted for subsequent language recogniser training.

3. Voice activity detection (VAD)
Transcriptions from the Switchboard 1 corpus and the annota-
tions from VOA2 and VOA3 datasets from LRE 2009 training
data were used to derive speech / non–speech labels. Switch-
board 1 data represented CTS data. VOA2 and VOA3 data rep-
resented broadcast narrowband speech (BNBS) data. A deep
neural network (DNN) for speech / non–speech classification
was trained on these data. The total amount of speech and non–
speech in the dataset are listed in Table 2.

The input to the DNN are filterbank features of 23 dimen-
sions with a context window of 15 frames on both sides, and a
DCT to reduce dimensionality to 368. 2 hidden layers of 1000
nodes were used and the output layer consisted of 2 nodes only,
for speech and non–speech. A frame–wise cross–entropy crite-
rion was used as target function in DNN training. For an input
audio file this DNN provided the estimated values of the pos-
terior probabilities of speech or non–speech for each frame. A
two–state HMM, with a minimum state duration of 20 frames,
was used to smooth the sequence of posteriors to a sequence
of speech segments. Speech segments were merged when the
intermediate silence was shorter than 2 seconds in order to pro-
duce chunks of speech which are long enough and linguistically
meaningful.

To validate the effectiveness of the VAD, it was applied on
a held–out test set from Switchboard 1. The segmentation error
rates provided by the VAD, before segment merging, had a de-
tection (of speech frames) miss rate of 2.21% and a false alarm
rate of 2.63%.

Table 3: V1 data amount across languages (hours)
Language TRAIN DEV HELDOUT

ara-acm 11.4 2.6 1.6
ara-apc 11.5 2.5 1.6
ara-arb 2.8 0.4 0.4
ara-ary 8.6 1.6 1.4
ara-arz 23.6 4.2 3.1
eng-gbr 0.4 0.05 0.05
eng-sas 2.0 0.3 1.9
eng-usg 36.6 4.4 4.6
fre-hat 2.1 0.3 0.3
fre-waf 0.9 0.2 0.03
por-brz 0.5 0.03 0.05
qsl-pol 8.8 5.3 5.5
qsl-rus 3.2 3.7 3.5
spa-car 9.7 1.2 0.8
spa-eur 1.5 0.2 0.04
spa-lac 2.2 0.3 0.2
zho-cdo 1.7 0.5 0.04
zho-cmn 18.3 3.7 3.9
zho-wuu 1.5 0.3 0.08
zho-yue 0.5 0.1 0.1

Table 4: V3 (30–second) data amount across languages (hours)
Language TRAIN DEV HELDOUT

ara-acm 23.0 4.8 3.8
ara-apc 26.0 5.4 3.6
ara-arb 2.8 0.4 0.4
ara-ary 21.3 4.3 3.4
ara-arz 68.1 8.6 7.0
eng-gbr 0.4 0.0 0.1
eng-sas 2.0 0.3 3.8
eng-usg 75.8 9.4 9.7
fre-hat 2.1 0.3 0.2
fre-waf 2.1 0.5 0.2
por-brz 0.5 0.0 0.1
qsl-pol 12.6 8.0 6.3
qsl-rus 3.6 5.9 6.0
spa-car 20.4 2.7 1.7
spa-eur 2.5 0.3 0.1
spa-lac 3.1 0.5 0.3
zho-cdo 3.1 0.6 0.3
zho-cmn 46.9 8.7 9.1
zho-wuu 3.2 0.5 0.3
zho-yue 1.0 0.2 0.2

4. Training and development data
There was no officially defined development data for LRE 2015.
For each of the 20 training languages, the first 80% of the files
(alphabetically sorted) were taken as training (TRAIN), the sub-
sequent 10% as development data (DEV), which is used for the
training of system fusion parameters. The final 10% was the
held–out data for evaluating system performance (HELDOUT).
In case the training of a single system needs development data,
10% of the files from TRAIN was selected for such purpose.

4.1. V1 training data

VAD, together with the minimum speech duration heuristics
and linking of consecutive speech segments, was applied on the
multi–lingual training data. This resulted in speech segments of
different durations. This data formed the V1 training data set,
with speech segments with a nominal duration of 30 seconds.
Speech segments with a duration between 20 and 45 seconds
were selected and the remaining part of the data was truncated.
The total duration of TRAIN is 147.8 hours (speech: 115.1
hours, non-speech: 32.7 hours). Details on the data amount
for different languages in the V1 data set are shown in Table 3.
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4.2. V3 training data

The V1 training data was created with a tight filtering criterion,
yielding only 147.8 hours of training data selected from over
700 hours of raw acoustic data. Hence, another segmentation
trial was conducted in an attempt to obtain more training data.
The V1 data set was first taken as the seed data. The data not
selected into the V1 dataset were returned as long segments.
All data was decoded by an English phone tokeniser (§5.3). A
maximum silence duration threshold was imposed. The data
was resegmented to give short segments, from which data se-
lection was conducted to obtain candidate segments of nominal
durations of 3, 10 or 30 seconds ,for both training and develop-
ment.

Table 4 shows the amount of data for the V3 30s data set.
V3 TRAIN contains 320.5 hours of data, which is 172.7 hours
more compared to V1 data. We also prepared TRAIN, DEV and
HELDOUT in different nominal durations (3sec, 10sec) by us-
ing different resegmentation and segment selection criteria. The
amount of TRAIN data for 3 seconds and 10 seconds are 308.4
hours and 262.0 hours, respectively.

5. Language recogniser systems
In the following, the two acoustic LR systems (the i–vector lan-
guage recogniser and the DNN language recogniser) and the
phonotactic language recogniser will be introduced. System
structure and results on V1 and V3 DEV and HELDOUT, and
the processing time of the most significant system components
will be reported. All scoring was based on the within–cluster
Cavg metric described in [20]. However, for each classifier an
optimal detection threshold was assumed (either a single opti-
mal threshold across all languages or multiple thresholds which
are language-dependent). The reported metric is the minimum
detection cost function (min DCF), which is Cavg at the optimal
operating point. All processing times reported are equivalent
wall–clock time on a single Intel Xeon E5 grade CPU running
in hyperthreaded mode.

5.1. i–vector language recogniser

The i–vector based language recogniser used a universal back-
ground model (UBM) and a total variability matrix (T) trained
on 884 hours of data. This included all provided training data
for LRE 2015 with Switchboard 1 and Switchboard Cellular
(502 hours), CallHome, CallFriend (LDC2015E87) and the pro-
vided multi–lingual data (LDC2015E88) for LR training (382
hours).

Frame–level VAD based on thresholding the log MEL en-
ergy was first performed and a 256-component Gaussian mix-
ture model with diagonal covariance was trained as the uni-
versal background model (UBM). The UBM was then used to
compute vocal tract length normalisation (VTLN) on the Mel–
frequency cepstral coefficient (MFCC) features for each utter-
ance. A second-pass feature extraction was carried out with fre-
quency warping, shifted delta cepstral coefficient with the stan-
dard 7−1−3−7 configuration (resulting in 7× (7+1) = 56-
dimensional feature), and mean normalisation and voiced frame
selection, on which the UBM training were performed again.
UBM training was repeated with full covariance and the number
of mixtures was increased to 2048. For each training utterance,
MAP adaptation from the UBM was performed to derive an
utterance–specific GMM. The GMM means are concatenated to
form supervectors of dimension 56× 2048 = 114688. Finally,
a total variability matrix was trained to project the supervectors

to a reduced space with 600 dimensions [21].
With the extracted i–vectors, support vector machines and

logistic regression models were trained and used as language
classifiers. The support vector machines used linear kernels.
The classifiers were configured either as within–cluster or
global. With the total varaibility matrix and i–vector extraction
algorithm remained unchanged, the within–cluster classifiers
select in-class i–vectors from the training utterances belonging
to the target language and out-of-class training i–vectors only
from the training utterances spoken in other languages within
the language cluster. The global classifiers were 1–versus–19
binary language classifiers. Table 5 summarises the results.
Looking into the test data with SVM model applied on V1 data,
it can be seen that the within–cluster model gave better perfor-
mance compared to the global model. Augmenting the UBM
and total variability training data to full data set (884 hours) fur-
ther reduced min DCF. Logistic regression generally performed
better than SVM. An increase of logistic regression training data
further improved the performance.

For V3 data, logistic regression again outperformed SVMs.
Among different training duration, logistic regression models
trained on 321 hours of V3 30s data (matched duration) per-
formed the best. The within–cluster model further reduced
min DCF. Finally, the experiments were repeated with V3 10–
second and 3–second data and the results were shown The
minDCF on HELDOUT data for the three durations are 6.09%,
15.90% and 20.51% respectively.

5.2. DNN language recogniser

Intuitively, a single-pass DNN language classifier can be used to
directly mapped the input features to the output layer which was
a 20–dimensional one–hot vector denoting the language iden-
tity. Another approach is a two-pass DNN language classifier.
A first-pass DNN, possibly trained for a different purpose (e.g.
phone recognition), is used to extract data (in terms of posterior
probabilities, bottleneck, etc.). These data is then used to train
a secondary classifier for languages [17].

After an initial evaluation of both methods, the two-pass
setting was preferred, since the single-pass DNN model was
showing a decrease in performance due to its overfitting to the
vocal tract characteristics of the training speakers. In the two-
pass appraoch, the first-pass DNN was an English phone recog-
niser DNN. This DNN was used to extract bottleneck features
from the multi–lingual input. It followed the setting described
in §5.3, except that the DNN did not include speaker MLLR
transform and sequence training was conducted. This design
was aimed to create different outputs compared with the phono-
tactic system and to maximise complementary effects during
system combination.

The bottleneck features were fed to a secondary DNN for
language classification. The dimension of the bottleneck fea-
ture was 64. Before feeding into the secondary DNN for lan-
guage recognition, feature splicing with 12 left and right con-
texts were carried out. Discrete cosine transform (DCT) was
applied to project the temporal sequence into 9–dimensional
feature vectors. The final structure of the secondary DNN was
576× 750× 750× 750× 750× 20. The initial learning rate is
0.0001 and the new–bob learning rate was applied. Two DNNs
were trained, for the V 1 and V 3 data distributions respectively.
For the 163 hours of training data in V 1, the total training time
was 5 hours; while for the 350 hours of V 3, the total training
time was 11 hours.

The DNN language classifier outputted frame–based poste-

183



Table 5: i–vector based LR results with different model settings
UBM & Total variability SVM / LogReg Within–cluster min DCF (%)
matrix training (Train duration) classifier DEV HELDOUT

(Test on V1 30-second data)
V1 30s train (148h) SVM (148h) No 6.34 10.75
V1 30s train (148h) SVM (148h) Yes 3.35 6.35
Switchboard + Unsegmented LR train (884h) SVM (148h) Yes 3.12 6.00
Switchboard + Unsegmented LR train (884h) LogReg (148h) No 2.52 4.54
Switchboard + Unsegmented LR train (884h) LogReg (884h) No 1.82 4.42

(Test on V3 30-second data)
Switchboard + Unsegmented LR train (884h) SVM (321h) Yes 4.51 7.90
Switchboard + Unsegmented LR train (884h) LogReg (148h) No 4.79 7.74
Switchboard + Unsegmented LR train (884h) LogReg (887h) No 4.24 7.48
Switchboard + Unsegmented LR train (884h) LogReg (321h) No 3.87 6.78
Switchboard + Unsegmented LR train (884h) LogReg (321h) Yes 2.88 6.09

(Test on V3 10-second data)
Switchboard + Unsegmented LR train (884h) LogReg (10s train, 262h) Yes 7.71 15.90

(Test on V3 3-second data)
Switchboard + Unsegmented LR train (884h) LogReg (3s train,308h) Yes 14.08 20.51

rior probability of languages. The posterior probability was the
scaled product of the language likelihood and the prior prob-
ability. Prior normalisation was performed by calculating the
number of frames used for training in a given language divided
by the total number of frames used for training. The likelihood
of each of the 20 languages was then obtained by dividing the
DNN posterior by the prior probability of the language. For a
given audio file or segment, the score assigned to each of the 20
languages was the average likelihood extracted from the DNN.
For this calculation, only areas which have been considered as
speech by the VAD described in §3 were used.

Table 6 shows the results of the DNN language recogniser
in different dataset. Min DCF for 30–second data is 13.91%
and 15.96% for V1 data; and 15.44% and 18.07% for V3 data.
Error rate decreases with duration.

5.3. Phonotactic language recogniser

The phonotactic language recogniser contained a phone to-
keniser built on switchboard 1 data and a support vector ma-
chine language classifier based on position–dependent phone
trigram tf–idf statistics [22]. The tokeniser followed a feed-
forward DNN hybrid setting with 6 hidden layers each having
2048 neurons followed by a bottleneck layer with 64 neurons
and an output layer with 3815 neurons (number of senones).
The input features of the DNN were mel–frequency cepstral
coefficient (MFCC) features with deltas and normalisation, fol-
lowed by global feature transform with linear discriminant anal-
ysis (LDA) and maximum likelihood linear transform (MLLT)
and feature splicing with 5 contextual frames on the left and the
right. The training targets were the senone alignment results
from a constrained maximum likelihood linear regression (CM-

Table 6: DNN language recogniser results
minDCR (%)

Test data DEV HELDOUT

V1 30s 13.91 15.96
V1 10s 15.69 18.74
V1 3s 18.11 21.55
V3 30s 15.44 18.07
V3 10s N/A N/A
V3 3s 18.82 21.71

LLR) adapted, maximum mutual information (MMI)–trained
acoustic model.

The English tokeniser was applied on the multi–lingual
training data. WFST-based decoding was implemented and a
di-phone language model (trained on Switchboard 1 data) was
used to achieve minimum phonotactic constraints on the phone
tokeniser outputs. Then utterance–based phone n–gram occur-
rence statistics were computed, from which term frequency (tf)
and inverse document frequency (idf) were derived. idf was
computed across the full multi–lingual training set. tf–idf vector
was constructed for each utterance, on which 20 binary classi-
fiers were trained for the 20 target languages. In the training for
each classifier, positive training vectors comprised all training
utterances belonging to the target language. Negative training
vectors consisted of only the training utterances within the lan-
guage cluster. During testing, idf was inherited from TRAIN and
the likelihood for each of the 20 languages were computed.

Four different aspects of the phonotactic LR classifier were
investigated. In every aspect, two conditions were tried, leading
to 24 = 16 different tokeniser settings. These trial settings
cover: tokenisers with and without utterance–based MLLR
adaptation; tf–idf statistics on phone bigrams (n = 2) and tri-
grams (n = 3); DNN with and without discriminative training
(sequence trained) on the English switchboard data; and differ-
ent di-phone language model scales in the WFST decoding of
the tokeniser.

The full list of results for 30s V1 data is shown in Table 7.
Tokenisers with MLLR adaptation behaved slightly better than
without MLLR. Trigram tf–idf statistics were more useful than
bigram ones. For MLLR models, sequence training on the En-
glish data did not give a better tokeniser in the multi–lingual set-
ting. There was no consistent performance gain on using either
LM scale factor in the English tokeniser. However, LM scale
factor 2 was believed to be small enough for this task. Based on
these results, tokeniser with MLLR adaptation, trigram tf–idf,
no sequence training and LM scale factor equal to 2 was chosen.
In terms of the processing speed, tokeniser GMM–HMM model
training took 15.29 hours. DNN training took 47.70 hours. Tri-
gram tf–idf statistics gathering took 172.49 hours.

We also tried the global classifier setting where 1–versus–
19 binary classifiers were trained for all languages. The result-
ing min DCF were 2−5% absolute higher. On V1 30s data, the
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Table 7: Phonotactic LR results with different tokeniser settings
Use N–gram Sequence LM min DCF (%)

MLLR order trained scale DEV HELDOUT

[V1 30s]
Yes 3 No 0.5 4.6 7.0
Yes 3 No 2 4.3 9.0
Yes 3 Yes 0.5 6.3 9.4
Yes 3 Yes 2 4.8 9.8
Yes 2 No 0.5 5.2 11.1
Yes 2 No 2 5.5 9.8
Yes 2 Yes 0.5 7.0 11.0
Yes 2 Yes 2 5.4 10.7
No 3 No 0.5 4.8 11.9
No 3 No 2 5.1 11.6
No 3 Yes 0.5 4.7 11.1
No 3 Yes 2 5.0 9.8
No 2 No 0.5 5.3 11.3
No 2 No 2 6.5 11.9
No 2 Yes 0.5 5.4 9.7
No 2 Yes 2 5.7 10.3

[V3 30s]
Yes 3 No 2 7.38 11.30

chosen tokeniser gave min DCF of 4.3% and 9.0% on DEV and
HELDOUT data. Replicating the same experiment on V3 data
gave 7.38% and 11.30% for DEV and HELDOUT 30–second
data. The whole experiment was replicated on 10–second and
3–second data (training and testing). Training and testing with
different duration combination were tried. It was found that the
30–second model gave the best results on test data in different
durations.

Table 8: LR results for standalone systems with Gaussian back-
end score calibration

min DCF (%)
(No calibration) (GMM backend)

System DEV HELDOUT DEV HELDOUT

[Multiple thresholds]
i-vector 2.88 6.09 4.88 9.09
DNN 15.44 18.07 13.65 16.30
Phonotactic 7.38 11.30 6.90 11.65
[Global threshold]
i-vector 6.29 12.48 11.89 20.17
DNN 24.43 26.54 18.28 22.50
Phonotactic 24.96 29.51 16.08 22.00

6. Primary system
The primary system submission to NIST LRE 2015 com-
prises three systems introduced above. Before system combi-
nation, Gaussian backend score calibration was conducted for
the acoustic DNN and the phonotactic language classifier [23].
For each target language, a Gaussian mixture model (GMM)
with 4 components was trained, with the maximum likelihood
criterion, on the multi-dimensional scores resulted from decod-
ing the TRAIN dataset. During decoding, the likelihood of each
language-dependent GMMs was computed. Table 8 shows the
LR results with Gaussian backend for the three component sys-
tems. The rows under the [Multiple thresholds] section include
the language detection results with language-dependent detec-
tion threshold (§5). Gaussian backend gave no improvements
for the i–vector based system, but consistent gains to the other
two systems were observed. To make the Gaussian backend
work for the i–vector scores, different parameterisations (e.g.

Table 9: System fusion results
min DCF (%)

[Multiple thresholds] [Global threshold]
System DEV HELDOUT EVAL DEV HELDOUT EVAL

[30s]
i-vector 2.88 6.09 20.90 3.73 10.21 27.51
DNN 10.79 14.59 31.50 12.79 19.97 37.68
phonotactic 6.69 12.53 25.84 11.72 19.21 31.19
3-sys fusion 2.17 5.76 21.79 3.14 9.42 27.90
[10s]
i-vector 6.87 12.23 28.49 8.44 17.38 34.22
DNN 12.83 16.34 33.41 15.47 21.53 40.42
phonotactic 14.96 23.85 29.83 19.18 27.43 36.07
3-sys fusion 4.95 10.09 27.11 5.59 13.83 32.92
[3s]
i-vector 10.92 17.2 32.12 11.50 22.83 36.61
DNN 14.80 17.13 36.43 16.08 21.81 41.98
phonotactic 25.95 31.10 37.99 31.49 36.11 41.63
3-sys fusion 9.20 13.38 31.40 9.69 17.70 36.67
[overall]
i-vector – – 28.56 – – 32.92
DNN – – 34.83 – – 40.16
phonotactic – – 33.72 – – 36.93
3-sys fusion – – 28.29 – – 32.44

Table 10: Post-evalution system enhancement
min DCF (%)

[Multiple thresholds] [Global threshold]
System DEV HELDOUT EVAL DEV HELDOUT EVAL

[30s]
3-sys fusion 2.17 5.76 21.79 3.14 9.42 27.90
BN + IV 2.24 5.13 19.00 2.80 10.84 25.75
4-sys fusion 1.17 5.05 19.94 2.00 8.87 25.25
[10s]
3-sys fusion 4.95 10.09 27.11 5.59 13.83 32.92
BN + IV 5.10 9.06 23.37 7.01 14.85 29.78
4-sys fusion 3.03 7.26 23.05 3.60 11.63 28.95
[3s]
3-sys fusion 9.20 13.38 31.40 9.69 17.70 36.67
BN + IV 9.29 13.69 27.55 10.05 18.47 32.55
4-sys fusion 6.74 10.97 27.22 7.18 15.53 33.26
[overall]
3-sys fusion – – 28.29 – – 32.44
BN + IV – – 25.14 – – 29.56
4-sys fusion – – 24.69 – – 29.20

increased mixture size), or further scaling of scores might be
needed.

We also looked at the performance of min DCF under a
global threshold. Compared with the multiple–threshold perfor-
mance above, Gaussian backend gave bigger relative reductions
of min DCF in the DNN and the phonotactic systems.

After score calibration, the single system scores were con-
verted to log likelihood ratios and DEV data was used to derive
a linear weight for system combination with respect to mini-
mum detection cost. System fusion trials were carried out in-
dependently for the six language clusters and the three nominal
durations (3 seconds, 10 seconds and 30 seconds).

The performance of the standalone i–vector, DNN, phono-
tactic LR systems and the 3-system fusion results are listed in
Table 9 in terms of min DCF, both in single and multiple thresh-
olds. The results on DEV are oracle results as the calibration
algorithm were tuned on the same data. The first three blocks
denotes the results on 30-sec, 10-sec and 3-sec respectively
and the bottom block is the overall result. Considering stan-
dalone system results, the i–vector system was consistently giv-
ing better results except for 3-second HELDOUT data. The DNN
system performance was relatively invariant to duration. The
phonotactic system degraded substantially when the duration of
test segments decrease. Across different data set, the training-
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Table 11: Pairwise system fusion results (min DCF with Global
threshold). The upper right triangular blocks show HELDOUT
results. The lower left blocks show EVAL results

30-sec BN + IV i–vector phonotactic DNN
BN + IV 8.16 9.70 10.39
i–vector 24.27 9.51 10.16
phonotactic 25.34 27.48 17.03
DNN 26.41 28.55 31.99
10-sec BN + IV i–vector phonotactic DNN
BN + IV 13.70 13.67 13.30
i–vector 28.24 16.68 18.43
phonotactic 28.18 32.42 18.69
DNN 31.36 34.72 35.96
3-sec BN + IV i–vector phonotactic DNN
BN + IV 18.68 18.04 16.94
i–vector 32.50 21.33 18.27
phonotactic 32.41 35.58 19.97
DNN 34.49 37.50 40.38

testing mismatch causes a significant DCF increase from DEV
to HELDOUT and further in EVAL. The overall DCF with EVAL
is 32.44%.

7. System enhancement
After the official LRE 2015 evaluation, a system enhancement
was carried out. The 64-dimension bottleneck features were ex-
tracted from the English DNN (§5.3). They substituted the fre-
quency warped shifted delta cepstral coefficients in the i–vector
system (§5.1), on which total variability matrix was re-trained.
I–vectors for bottlenecks in the same dimension were extracted
and logistic regression language recognition was retrained. This
setting was parallel with one of the optimal settings with En-
glish DNN described in [18]. Our reported results aim at cross-
validating the robustness of the bottleneck i–vector setting, in
the noisy condition in NIST LRE 2015.

Table 10 shows the results of the bottleneck i–vector system
(BN + IV) for DEV, HELDOUT and EVAL. Compared to the
official 3-component fusion system (3-sys), the bottleneck i–
vector system did not show consistent improvements in all DEV
and HELDOUT data. Nevertheless, bottleneck i–vector system
demonstrates lower min DCF for all EVAL data set.

Score calibration and fusion were performed on all four
component systems (i.e. the three component systems in the of-
ficial submission and the bottleneck i–vector system described
above) using the identical method as described in §6. The 4–
system fusion demonstrated the best performance in almost all
data set. The single threshold min DCF for overall EVAL data
is 29.20%, which was a relative improvements of 9.99% com-
pared with the 3-system fusion system.

To compare the relative contributions of the 4 systems, pair-
wise system fusion among the 4 systems were carried out on
HELDOUT and EVAL data. Table 11 shows the results. Accord-
ing to Table 9 and 10, standalone systems were ranked accord-
ing to their performance in the order of: (1) bottleneck i–vector
(BN + IV) (2) i–vector (3) phonotactic and (4) DNN. For any
given system, pairwise system fusion with a better system gen-
erally gave better results. (i.e. (2)+(3) is better than (2)+(4)).
This is particularly true on EVAL data. The only exceptions were
found in system fusion between the BN + IV and the phono-
tactic systems on 3-second and 10-second data, where (1)+(3)
was marginally better than (1)+(2). This might be explained
by the stronger complementary effects between the bottleneck

i–vector and the phonotactic systems, which made the final fu-
sion system outperform the fusion of the best two i–vector based
systems.

8. Summary
In this paper, the Sheffield submission system to NIST Lan-
guage Recognition Evaluation 2015 was presented. The system
comprises three LR classifiers. Two are acoustic-based, which
used i–vectors and a tandem DNN language recogniser respec-
tively. The third classifier is a phonotactic language recogniser.
A post-evaluation system enhancement was carried out where
i–vectors were extracted from the bottleneck features of an En-
glish DNN. Across four system settings, the i–vector and the
bottleneck i–vector system demonstrated the best performance.
System fusion brought further improvements. The performance
of the tandem DNN classifier and the phonotactic classifier sub-
stantially degraded in 30-second and 3-second test segments re-
spectively. In future study, variability compensation of channel
variety and robustness of the phonotactic LR classifier can be
enhanced.
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