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Abstract

There are many factors affecting the variability of an i-vector
extracted from a speech segment such as the acoustic con-
tent, segment duration, handset type and background noise.
The state-of-the-art Probabilistic Linear Discriminant Analysis
(PLDA) aims at modelling all these sources of undesirable vari-
ability within a single covariance matrix. Although techniques
such as source normalization have been proposed to reduce the
effect of different sources of variability as a pre-processing for
PLDA, still the performance of speaker recognition is affected
under cross-source evaluation condition.

This study aims at proposing a language-independent
PLDA training algorithm in order to reduce the effect of lan-
guage on the performance of speaker recognition. An accurate
estimation of speaker and channel subspaces from a multilin-
gual training data set which are void of language variability can
assist PLDA to work independent of the language. When eval-
uated on the NIST 2008 speaker recognition multilingual trials,
our proposed solution demonstrates relative improvement of up
to 10% in equal error rate (EER) and 6.4% in minimum DCEF.

1. Introduction

Over recent years, i-vector representation of speech segments
has been widely used by the state-of-the-art speaker recogni-
tion systems [1]. This representation provides an elegant way to
map arbitrary duration speech segments into a fixed-length and
low-dimensional vector that preserves the speaker information.
This can be accomplished by using Factor Analysis (FA) tech-
nique to learn a low-dimensional subspace from a large collec-
tion of development data. The speaker recognition technology
based on i-vectors currently dominates the research field due
to its state-of-the-art performance, low computational cost and
the suitability of i-vector for machine learning techniques. The
recent NIST i-vector machine learning challenge [2] was also
performed to measure state-of-the-art performance and find the
most promising algorithmic approaches on the basis of i-vectors
[3,4,5,6].

Although current text-independent speaker recognition sys-
tems are considered to be independent of the language being
spoken, their performance will be affected in multilingual trial
conditions. This was the focus of NIST Speaker Recognition
Evaluation (SRE) in 2008 [7]. Due to the availability of large
corpora in English that contain a large number of speakers with
multiple recordings for each speaker in different degradation
conditions, we can see much better performance for English
than multilingual trials [1]. The current session compensa-
tion techniques such as Within-Class Covariance Normalization

(WCCN), Linear Discriminant Analysis (LDA) or Probabilistic
LDA (PLDA) [8] aim to improve system robustness by alle-
viating unwanted variability induced by factors such as trans-
mission channel, background noise, and speaker characteristics
(health, age, language) from i-vectors, but they are all depen-
dent on a development data with such characteristics. However,
lack of multilingual utterances for each speaker in system de-
velopment will restrict current techniques to model language
source of variability and results in performance degradation.

The standard PLDA algorithm provides a powerful mech-
anism in extracting speaker-specific information from all other
sources of undesired variability in i-vector space. Specifically,
PLDA uses within-speaker and between-speaker variability ob-
served in different utterances of individual speakers to find cor-
responding subspaces in the i-vector space. Therefore, PLDA
requires multiple utterances for each speaker under different
degradation conditions to be able to properly model all kinds
of variability. However, providing such a resource might be too
expensive or even unrealistic. To tackle this problem, a number
of techniques have been proposed to compensate for the lack of
adequate data which include source-normalization and domain-
adaptation.

Source normalization technique has been proposed as to
improve the estimation of within-speaker scatter matrix from
a training database with insufficient variety of speaker utter-
ances from different sources [9]. The within-speaker variabil-
ity is computed as the residual total variability in the i-vector
space that is not captured by between-speaker variability. The
between speaker variability is then computed on a source con-
ditioned basis to remove the bias toward a specific source.
This technique has been incorporated into Within-Class Covari-
ance Normalization (WCCN) [10] as well as Linear Discrim-
inant Analysis (LDA) in order to improve the robustness of
i-vector based speaker recognition under cross-speech-source
conditions. Language-normalized WCCN (LN-WCCN) [11]
was proposed as an i-vector pre-processing stage prior to PLDA
which provides speaker recognition improvement under mul-
tilingual scenarios. Source-normalized LDA (SN-LDA) [12]
technique has also been proposed to enhance standard LDA al-
gorithm by reducing the influence of source variations on the
between-speaker scatter matrix as well as incomplete represen-
tation of within-class scatter matrix due to insufficient cross-
source utterances for each speaker in the training set.

Beside source-normalization, domain adaptation technique
has also gained considerable attention to compensate for the
cross-speech source variability of in-domain and out-of-domain
data. An unsupervised adaptation of LDA matrix to unseen data
domain using Within-speaker Covariance Correction (WCC)
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has been proposed in [13]. In [14, 15] the authors presented a
framework for supervised and unsupervised adaptation of out-
of-domain PLDA parameters to produce better performance for
in-domain data. After analyzing the sources of degradation, Ha-
gai Aronowitz found that the main source of degradation is a
shift in dataset [16] and based on this finding, he proposed an
inter-dataset variability compensation technique to compensate
for this shift. A new inter-dataset variability compensation ap-
proach has also been proposed in [17].

In this work, we extended PLDA paradigm to make it robust
with respect to i-vectors extracted from multilingual speech ut-
terances through direct modeling of language variability. In-
stead of modeling within-speaker variability in a single sub-
space, we proposed to separate language source of variability
from all other sources of variability refered to as channel vari-
ability by using a new term for language in PLDA factorization.
Therefore, each speaker utterance will be characterized by a set
of speaker, language, and channel factors. A similar separation
of language from channel variability for the task of language
recognition based on the original Joint Factor Analysis (JFA)
has been investigated in [18] where only language factors which
supposed to contain all relevant language information were fed
into a language classifier. By capturing and removing language
source of variability, we expect the PLDA to work independent
of the language being spoken in an utterance. The proposed
language-independent PLDA (LI-PLDA) when provided with
multilingual training data, indicates performance gain on NIST
SRE’08 multilingual telephony trials compared to the standard
PLDA modeling. Our experiments also showed that the use of
language source normalization prior to LI-PLDA could com-
plement the proposed method and result in even better perfor-
mance.

The paper is organized as follows. Section 2 reviews the i-
vector/PLDA speaker recognition system and presents a formal
mathematical formulation, Section 3 describes the language-
normalized WCCN (LN-WCCN) and our proposed language
independent PLDA modeling as techniques to reduce the effect
of languages. In Section 4 we explain how experiments were
conducted and present the results in Section 5. Analysis and
discussion is given in Section 6.

2. Speaker Recognition System

In this section we will provide a description of the main com-
ponents of a speaker recognition system including i-vector ex-
traction, pre-processing, modeling and scoring. Throughout the
paper, vectors are represented by italic lowercase letters, matri-
ces by upper-case bold letters and constants by italic upper-case
letters.

2.1. i-Vector features

i-Vectors are low-dimensional representation of GMM super-
vectors in a single subspace which include all characteristics
of speaker and inter-session variability, named total variability
matrix T [1]. Given an observation set X5, the adapted mean
super-vector m is modeled as,

ms = mo + Tws + ¢, (1)

where my is the Universal Background Model (UBM) super-
vector, essentially a speaker-independent GMM super-vector,
ws with standard normal distribution is referred to as the i-
vector, and ¢ is the residual term which accounts for the vari-
ability not captured by T'. The extraction of i-vectors in the pro-

posed system is based on Baum-Welch statistics calculated for
a given utterance with respect to UBM components and speech
frame-level Mel-Frequency Cepstral Coefficients (MFCC).

2.2. Pre-processing

In order to achieve the state-of-the-art performance, a number
of techniques have been proposed as pre-possessing steps for
PLDA. A common pre-processing includes within-class covari-
ance normalization (WCCN) [10] followed by length normal-
ization of i-vectors [19].

2.2.1. Within-Class Covariance Normalization (WCCN)

One of the effective pre-processing step is to normalize the
within-speaker covariance matrix of i-vectors [10]. A within-
class covariance matrix, W, is calculated as,

S Ns

W= éZZ(wf — ) (w] —ws)", @

s=1i=1

where S is the number of speakers, each having N, utterances
and ws = N% va:i wj is the mean of i-vectors from speaker
s. This technique computes a transformation matrix from the
Cholesky decomposition of W~'= BB which will normal-

ize within-speaker scatter matrix.

2.2.2. Length-Normalization

Due to the Gaussian probability distribution assumption made
by PLDA model, it has been shown that length normalization of
i-vectors can approximately Gaussianize their distribution [19].
This has been shown to improve the performance of Gaussian
PLDA to that of heavy-tailed PLDA [20].

2.3. Probabilistic Linear Discriminant Analysis (PLDA)

Probabilistic LDA (PLDA) provides a powerful mechanism
to distinguish between-speaker variability which characterizes
speaker information from all other sources of undesired vari-
ability that characterize distortions. To achieve this, however,
it is required to provide PLDA with enough labeled data which
contain multiple utterances of a speaker under different distor-
tion.

A standard Gaussian PLDA assumes that an i-vector w, is
modeled according to

w=m+ Vy+ z. 3)

where, m is the mean of i-vectors, y denotes the speaker la-
tent variable with standard normal prior and the residual z is
normally distributed with zero mean and full covariance matrix
3.. In order to estimate the parameters of the model (V, X.),
PLDA uses the expectation-maximization (EM) algorithm [8].

After parameter estimation, for each two trial i-vectors w1
and w2, the verification score will be computed using the log
likelihood ratio of the hypothesis H, that both i-vectors are
from the same speaker and the hypothesis H 4 that they are from
two different speakers,

p(wi, wa|Hs)

. 4
p(wi, wa|Ha) @

score = log

Considering the Gaussian assumption, the PLDA score can be
computed in closed-form solution

score = log N'([53]; [, [s5521)

5)
—log N([42]; [, [578.))-
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where, S = VV7T and S; = Sg+3X,. Foraclear exposition
and a fast method to compute the score we refer you to [19].

3. Language-independent Speaker
Recognition

This section provides a brief description of Language-
Normalized WCCN (LN-WCCN) which has been shown to sig-
nificantly improve i-vector/PLDA system performance in mul-
tilingual scenario [11], then it describes the proposed LI-PLDA
algorithm which accounts for language variability.

3.1. Language-Normalized WCCN (LN-WCCN)

Language source normalization is an effective technique to
the reduction of language dependency in the state-of-the-art i-
vector/PLDA speaker recognition system [11]. It can be im-
plemented by extending the Source-Normalized WCCN (SN-
WCCN) [12] in order to mitigate variations that separate lan-
guages. This can be accomplished by using i-vectors lan-
guage label to identify different sources during the devel-
opment. Language-Normalized WCCN (LN-WCCN) utilizes
source-normalized within-speaker scatter matrix Sy which is
estimated as the variability not captured by the between speaker
scatter matrix as R R

SW =Sr—SsB. (6)

in which St is the total scatter matrix computed as

N
ST = anwnT7 (7)
n=1

where N is the total number of i-vectors available for develop-
ment (assuming zero-mean i-vectors), and S g is the normalized
between-speaker scatter matrix which is formulated as

L S
SB:ZZNSZ(mlS—mZ)(mZS—ml)T. ®
=1 s=1

where L is the number of languages available in development
data, S is number of speakers for language [, m! is the mean
of N! i-vectors from speaker s and language [ and finally m; is
the mean of all i-vectors of language [.

3.2. Language-independent PLDA

When i-vectors are extracted from multilingual utterances, the
language being spoken adds additional variability to the i-
vectors due to the differences in acoustic content. We address
this problem by extending the PLDA training algorithm in order
to mitigate the variability associated with languages in i-vector
space. In this way, we proposed to add a language dependent
term intended to model the language being spoken in PLDA
factorization.

Given a recording of a speaker s in language [, the proposed
PLDA assumes the following linear factorization for i-vector
w(s) (assume centered i-vectors),

w(s) = Vy(s) + z ©

z=Lz(l)+e¢
in which, y(s) ~ A(0,I) is the speaker-dependent component
and z ~ N(0,X;) is a speaker-independent random vector
indicating inter-session variability, z:(l) ~ N'(0,I) is the latent
variable corresponds to language being spoken, and the residual

e ~ N(0,X) having a normal distribution with mean 0 and
full scatter matrix 3 indicates channel variability. V and L are
eigenvoice and eigenlanguage subspaces respectively.

The difference between this modeling and that of the stan-
dard PLDA is that the language variability associated with i-
vector point estimation can now be expressed in the form of
La(1). The columns of matrix L contain the basis for the lan-
guage subspace and the term (1) represents a point in that sub-
space. The idea is to estimate channel variability void of lan-
guage variability.

The proposed model comprises of three statistically inde-
pendent parts, the speaker specific part Vy(s) which describes
the between-speaker variability which does not depend on a par-
ticular utterance of speaker s, the language specific part Lz (1)
which only depends on the language being spoken in a partic-
ular utterance (e.g. it does not depend on a particular utterance
in language [), and € which depends on a particular utterance of
speaker s and describes all other variability other than language
and refers to as channel variability.

Mathematically, we can describe the model in (9) in terms
of conditional probabilities:

p(w(s)ly(s),z(1), A) = N(Vy(s) + Lz (), Z).  (10)

The maximum likelihood estimation of the model hyper-
parameters A = {V,L, 3} are obtained from a collection of
development i-vectors VW with both speaker labels, W(s) =
{w;(s)}2,, and language labels, W(I) = {w;(1)};L,,] =
1...L, using an EM algorithm iteratively. We should note
that, training PLDA hyper-parameters A, requires language la-
bel as well as speaker label for all i-vectors during develop-
ment but not necessarily requires multilingual utterances for
each speaker. However, evaluation will be done without such
information.

We compute the posterior probability of latent variable y(s)
using Bayes’ rule as,

p(y(s)W(s), A) = pOV(s)ly(s), Mp(y(s)), (1)

where p(y(s)) ~ N(0,I) and the conditional likelihood is
given by
POV (s)ly(s), A) = N(Vy(s), Z). (12)

We should note that in (12) the covariance matrix X is void
of language variability. Similarly, the posterior probability of
latent variable x (1) is computed as,

pz(D)Z2(1),A) = p(Z(O)|z(D), Np(z(1),  (13)

in which we defined Z(1) = {z;(1)}}X, which corresponds to
the speaker-independent components of i-vectors in language [,
W(), p(z(1)) ~ N(0,T) and the conditional likelihood distri-
bution is given by

P(Z(D)|z(1), A) = N (L(1), ). (14)

By estimating the directions of language variability during
development, although it may not include all languages, the ef-
fect of language on X will be reduced. In order to exclude rele-
vant language information in computation of verification score
for two i-vectors w1 and wa, we proposed to eliminate language
variability S;, = LLT in the computation of total variability
St = Sp + St + X. In this way, we expect PLDA scoring to
be independent of language being spoken.
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Table 1: Performance comparison of PLDA and LI-PLDA combined by WCCN and LN-WCCN across different telephony trials of the

core condition of SRE’08.

All Languages English Diff. Languages Same Languages
EER Cred" EER Crd" EER Cred" EER Crd"
WCCN+PLDA 470% 0.0236 | 2.34% 0.0105 | 5.81%  0.0263 | 4.48%  0.0231
LN-WCCN+PLDA 459% 0.0228 | 2.23% 0.0103 | 5.69% 0.0252 | 4.36%  0.0223
WCCN+LI-PLDA 4.42% 0.0228 | 2.13% 0.0100 | 551% 0.0252 | 4.25%  0.0223
LN-WCCN+LI-PLDA | 4.24% 0.0221 | 2.20% 0.0097 | 5.35% 0.0247 | 4.04% 0.0214

4. Experimental Setup
4.1. Development corpora

Different corpora are used in our experiment for system devel-
opment. LDC releases of Switchboard cellular: phase II, and
the telephony speech data drawn from NIST 2004 and 2005
speaker recognition evaluation corpora form our development
set. The aforementioned corpora contains 13338 utterances
from 1108 speakers, speaking in 5 different languages including
English (12047), Russian (314), Spanish (146), Arabic (488)
and Mandarin (343), of whom 204 speakers have multilingual
speech utterances (English and one of the other 4 languages).

4.2. Evaluation protocol

The NIST 2008 corpus is used to evaluate the proposed ap-
proach. Results are reported for telephony multilingual tri-
als as well as English trials of SRE’08 core condition. We
have reported the performance using equal error rate (EER) and
minimum decision cost function (CZ{;}”) as described in NIST
SRE’08 evaluation plan [7]. The evaluation protocol includes
3832 target and 33218 non-target trials in which 6377 test seg-
ments were evaluated against 3263 enrolment segments. All
segments were uttered by 1336 speakers who speak mainly in
15 different language dialects which can be grouped into fewer
language clusters containing the languages in development data.
The majority of the utterances are in English, however, there are
multilingual utterances from 468 speakers.

4.3. System configuration

For acoustic features, we used 20 MFCC features along with
first and second order derivatives for a total of 60 features.
These feature vectors were then passed through an energy-
based speech activity detector, followed by Cepstral Mean and
Variance Normalization (CMVN). We trained a full covariance,
gender-independent UBM model with 2048 Gaussian on the de-
velopment data. We then trained a 500-dimensional i-vector ex-
tractor on the same data. The open-source Kaldi software has
been used for all these processing [21]. WCCN and LN-WCCN
transforms as well as PLDA, were also trained on the same de-
velopment data. The parameters of the PLDA model were tuned
using the core condition of the SRE’05 evaluation protocol. We
have set a 300-dimensional subspace for the PLDA eigenvoice
and a 10-dimensional subspace for eigenlanguage latent com-
ponents.

5. Results

In this section we compare the performance of PLDA with
our proposed language-independent PLDA (LI-PLDA) using
the SRE’08 multilingual trial set. We also report the perfor-
mance of recognition on English trials as well as same-language

and different-language trials to observe the effect of proposed
method on the speaker recognition performance.

Speech language normalization was incorporated into our
system by utilizing LN-WCCN instead of WCCN as pre-
processing. To better observe the effects of normalization as
pre-processing, the performance of the following four systems
are evaluated:

e WCCN+PLDA: This is our baseline system which
shows the state-of-the-art speaker recognition perfor-
mance without considering the language of utterances.

e LN-WCCN+PLDA: This system uses source normaliza-
tion in order to normalize the effect of language on i-
vectors as a pre-processing step for the PLDA modeling
as proposed in [11].

e WCCN+LI-PLDA: The proposed language independent
PLDA modeling with WCCN as preprocessing.

e LN-WCCN+LI-PLDA: This system uses both the abil-
ity of source-normalization and our proposed LI-PLDA
modeling to reduce the effect of language on speaker
recognition.

Table 1 summarizes the results for these systems. By com-
paring the results, it can be observed that the performance met-
rics were improved through the use of language normalization
which reflect previous findings about LN-WCCN [11]. In mul-
tilingual trials we can see that LN-WCCN could provide a rela-
tive improvement of 2.3% in EER and 3.4% in minimum DCF
compared to the baseline system. This indicates the suppres-
sion of language variation from i-vectors which results in the
robustness of PLDA system to multilingual speech trials. We
also expect language normalization not to affect the recogni-
tion of English trials which can be seen from the results that it
did not have any sensible impact on minimum DCEF, yet we can
see some improvement in EER. The proposed LI-PLDA when
followed by LN-WCCN can also provide a better improvement
than WCCN by 10% in EER and 6.4% in minimum DCF com-
pared to the baseline system. The results indicate that the pro-
posed solution has complemented language normalization in re-
moving the effect of language on speaker recognition. Figure 1
compares the detection error trade off (DET) curves for each of
the four systems.

6. Discussions and Conclusions

This work proposed to reduce the effect of language as a source
of variability on the performance of speaker recognition by ex-
tending the PLDA training algorithm. The experiments con-
ducted in this paper demonstrate that i-vector/PLDA modelling
of multilingual speech data can be improved by incorporating
a language-dependent term intended to model language being
spoken in the PLDA training algorithm. This improvement
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Figure 1: Plot of DET curves for SRE’08 telephony trials of the
core condition comparing the performance of the four systems.

could be expected due to a better estimation of channel subspace
which is void of language variability and as a result in a better
estimation of speaker subspace. When combined with speech
source normalization, LN-WCCN prior to LI-PLDA modeling
was found to ameliorate the performance and offer considerable
benefits. For our future work we are interested in conducting ex-
periments using more multilingual data for development as well
as experiments under additional conditions other than telephone
speech.
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