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Abstract
I-Vectors are low dimensional front-end features known to ef-
fectively preserve the total variability of the signal. Motivated
by their successful use for several classification problems such
as speaker, language and face recognition, this paper introduces
i-vectors for the task of speech activity detection (SAD). In
contrast to most state-of-the-art SAD methods that operate at
the frame or segment level, this paper proposes a cluster-based
SAD, for which two algorithms were investigated: the first
is based on generalized likelihood ratio (GLR) and Bayesian
information criterion (BIC) for segmentation and clustering,
whereas the second uses K-means and GMM clustering. Fur-
thermore, we explore the use of i-vectors based on different
low-level features including MFCC, PLP and RASTA-PLP, as
well as fusion of such systems at the decision level. We show
the feasibility and the effectiveness of the proposed system in
comparison with a frame-based GMM baseline using the chal-
lenging RATS dataset in the context of the 2015 NIST Open-
SAD evaluation.

1. Introduction
Speech Activity detection (SAD) aims to distingush between
speech and non-speech (e.g. silence, noise or music) regions
within audio signals. SAD is an important and necessary pre-
processing step in a number of applications such as speaker
recognition and diarization, language recognition, and speech
recognition. It is also used to assist humans in analyzing
recorded speech for applications such as forensics, enhance
speech signals, and improve compression of audio streams be-
fore transmission.

Existing SAD techniques fall into two categories: super-
vised and unsupervised [1]. Among the supervised techniques,
GMM [2] is perhaps the most widely used. Motivated by
the success of i-vectors [3] over GMMs on several classifica-
tion tasks such as speaker and language recognition, this work
presents, to the best of our knowledge, the first attempt to apply
i-vectors for SAD.

Most existing SAD approaches operate at the frame level.
This makes them subject to high smoothing error and highly
dependent on window-size tuning. In contrast, we propose a
cluster-level SAD. Two algorithms are investigated: the first is
based on generalized likelihood ratio and Bayesian information
criterion (GLR/BIC) for segmentation and clustering, whereas
the second is based on K-means and GMM clustering. Clus-
tering is suitable for i-vectors since only a single i-vector is ex-
tracted per cluster, and this approach avoids the computational
cost of extracting i-vectors on overlapped windows, in contrast
to existing approaches that use contextual features [4, 5]. Two
different classification techniques are explored for discriminat-
ing between the speech and non-speech i-vectors: probabilistic
linear discriminant analysis (PLDA) [6] and support vector ma-
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Figure 1: Proposed speech activity detection system. It includes a first
step of feature clustering using either K-means and GMM (left side)
or GLR/BIC (right side) and a second step of SAD based on either i-
vectors (left side) or GMM (right side).

chine (SVM) [7]. Fig. 1 illustrates the scheme of the proposed
SAD systems.

Different audio features were considered in our study,
namely MFCC, PLP and RASTA-PLP. In addition, we applied
a score-level fusion based on logistic regression to combine de-
cision outputs from different SAD systems. Experiments were
carried out on the RATS dataset [8] in the context of the 2015
NIST OpenSAD challenge1.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews the state-of-the-art in speech activity detection.
Section 3 presents the different clustering techniques used in
this work. Section 4 describes both cluster-based GMM and
i-vector classifiers used for SAD. Section 5 details the experi-
mental setup and results. Section 6 concludes the paper.

1NIST disclaimer: “NIST serves to coordinate the NIST OpenSAD
evaluations in order to support speech activity detection research and
to help advance the state-of-the-art in speech activity detection tech-
nologies. NIST OpenSAD evaluations are not viewed as a competi-
tion: as such, results reported by NIST are not to be construed, or
represented, as endorsements of any participant’s system, or as offi-
cial findings on the part of NIST or the U.S. Government”. Web page:
http://www.nist.gov/itl/iad/mig/opensad_15.cfm

Odyssey 2016, June 21-24, 2016, Bilbao, Spain

334



2. Related Work
A wide spectrum of approaches exist in the literature to ad-
dress speech activity detection. They range from very simple
systems such as energy-based classifiers to extremely complex
ones such as deep neural networks (DNN). Although the SAD
task is very old, recent studies on real-life data have shown that
state-of-the-art SAD techniques lack generalization power. This
explains the increased research interest in the last few years, es-
pecially within the DARPA RATS program2.

Existing SAD approaches can be categorized into unsuper-
vised and supervised techniques. Unsupervised SAD tech-
niques include standard real-time SADs such as the one used by
G.729 [9] in telecommunication products (e.g. voice over IP).
To meet the real-time requirements, these techniques combine a
set of low-complexity, short-term features such as spectral fre-
quencies, full-band energy, low-band energy, and zero-crossing
rate extracted at the frame level (10 ms). The classification be-
tween speech and non-speech is made using either hard or adap-
tive thresholding rules.

More robust unsupervised techniques assume access to
long-duration buffers (e.g. multiple seconds) or even the full
audio recording. This helps to improve feature normalization
and gives more reliable estimates of statistics. Examples of
such techniques are energy-based bi-Gaussians, vector quanti-
zation [10], 4Hz modulation energy [11], a posteriori signal-
to-noise ratio (SNR) weighted energy distance [12], and unsu-
pervised sequential GMM applied on 8-Mel sub-bands in the
spectral domain [13].

Although unsupervised approaches do not require any train-
ing data, they often suffer from relatively low detection accu-
racy compared to supervised approaches. One main drawback
is that they are highly dependent on the balance between speech
and non-speech regions (e.g. energy-based bi-Gaussian tech-
nique).

Supervised SAD techniques include Gaussian mixture
models (GMM) [1, 14, 15, 16], hidden Markov model (HMM)
Viterbi segmentation [4], deep neural network (DNN) [5], re-
current neural network (RNN) [17], and long short-term mem-
ory (LSTM) RNN [18].

Different acoustic features may be used in supervised ap-
proaches, varying from standard features computed on short-
term windows (e.g. 20 ms) such as MFCC, PLP, RASTA-
PLP, or power-normalized cepstrum coefficients (PNCC) [16]
to more sophisticated long-term features that involve contex-
tual information such as frequency domain linear prediction
(FDLP), voicing features, and Log-mel features [4, 19].

Supervised methods use training data to learn their models
and architectures. They typically obtain very high accuracy on
seen conditions in the training set but fail in generalizing to un-
seen conditions. Moreover, they are more complex to tune and
time consuming, especially during the training phase.

One common drawback of most existing supervised and un-
supervised SAD approaches is that their decisions operate at
the frame level (even in the case of contextual features), which
cannot be reliable by itself, especially at boundaries between
speech and non-speech regions [17]. Smoothing techniques are
often used to alleviate this issue.

To reduce the effect of such problems, this work proposes
a SAD technique where the decision is made at the cluster level
instead of the frame level and is thus more robust to the local
behavior of the features.

2http://www.darpa.mil/program/
robust-atuomatic-transcription-of-speech

3. Data Structuring
3.1. GLR/BIC Segmentation and Clustering

The goal of this task is to split the audio recording into a
set of segments Si where each segment ideally contains only
one audio source, then merge the most similar segments in a
hierarchical bottom-up manner. This technique is inspired by
the state-of-the-art work on speaker diarization [20, 21, 22, 23].

Let X = x1, . . . , xNx be a sliding window of feature vec-
tors of dimension d and M its parametrical model. We assume
M to be multivariate Gaussian. The feature vectors are either
MFCC, PLP or RASTA-PLP extracted on 20 ms windows with
a shift of 10 ms. In practice, the size of the sliding window X is
empirically set to 1 second (i.e. NX = 100).

The generalized likelihood ratio (GLR) [20] is used to se-
lect one of two hypotheses:

• H0 assumes that X belongs to only one audio source. Thus,
it is best modeled by a single multivariate Gaussian distribu-
tion:

(x1, . . . , xNx) v N(µ, σ) (1)

• Hc assumes that X is shared between two different audio
sources separated by a point of change c: the first source
is in X1,c = x1, . . . , xc whereas the second is in X2,c =
xc+1, . . . , xNx . Thus, the sequence is best modeled by two
different multivariate Gaussian distributions:

(x1, . . . , xc) v N(µ1,c, σ1,c) (2)

and
(xc+1, . . . , xN ) v N(µ2,c, σ2,c) (3)

Therefore, GLR is expressed by:

GLR(c) =
P (H0)

P (Hc)
=

L(X,M)

L(X1,c,M1,c)L(X2,c,M2,c)
(4)

where L(X,M) is the likelihood function. Considering the log
scale , R(c) = ln(GLR(c)), Eq. 4 becomes:

R(c) =
NX
2

log |ΣX |−
NX1,c

2
log |ΣX1,c |−

NX2,c

2
log |ΣX2,c |

(5)
where ΣX , ΣX1,c and ΣX2,c are the covariance matrices and
NX , NX1,c and NX1,2 the number of vectors of X , X1,c and
X2,c, respectively. A Savitzky-Golay filter [24] is applied to
smooth the R(c) curve Example output of such filtering is pre-
sented in Fig. 2(b).

By maximizing the likelihood, the estimated point of
change ĉglr is:

ĉglr = argmax
c
R(c) (6)

The above GLR algorithm detects a first set of candidates
for segment boundaries, which are then used in a stronger detec-
tion phase based on Bayesian information criterion (BIC) [21].
The goal of BIC is to filter out the points that are falsely de-
tected and to adjust the remaining points. The new segments
boundaries are estimated as follows:

ĉbic = argmax
c

∆BIC(c) (7)

where
∆BIC(c) = R(c)− λP (8)
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Figure 2: GLR and BIC automatic responses. Sub-figure (a) illustrates
10 seconds of an audio signal. Sub-figure (b) shows the curve produced
by GLR. It also shows the first set of segment boundaries (b) that corre-
spond to local minima on the curve. Sub-figure (c) shows the refinement
power of BIC, where boundaries are accurately detected. The colored
curves show the variation of Eq. 8 on a variable-size shifted window.

and preserved if ∆BIC(ĉbic) ≥ 0. As shown in Eq. 8, the BIC
criterion derives from GLR with an additional penalty term λP
that depends on the size of the search window [25].

Fig. 2(a) plots a 10-second audio signal. The actual re-
sponses of smoothed GLR and BIC are shown in Fig 2(b) and
Fig 2(c), respectively. The colored curves in Fig 2(c) corre-
spond to Eq.8 applied on a single window each. The local max-
ima are the estimated boundaries of the segments and accurately
match the ground truth.

Finally, the resulting segments are grouped by hierarchi-
cal agglomerative clustering (HAC) and the same BIC distance
measure [26] used in Eq. 8. We avoid unbalanced clusters by
introducing a constraint on the size of the clusters, and the stop-
ping criterion chosen is when all clusters have duration higher
than Dmin. Dmin is empirically set to 5 seconds.

3.2. K-means + GMM Clustering

The K-means and GMM clustering is the typical clustering used
for universal background model (UBM) training in the GMM-
based speaker and language recognition systems. It is accom-
plished using the Expectation - Maximization (EM) [27] algo-
rithm to maximize the likelihood over all the features of the
audio recording. This partitional clustering is faster than the hi-
erarchical clustering and does not require a stopping criterion;
however, it requires the number of clusters (K) to be set in ad-
vance. In our experiments, we choose K to be dependent on the
duration of the full recording Drecording:

K =

⌈
Drecording

Davg

⌉
+ 1 (9)

whereDavg is the average duration of the clusters and de denotes
the ceil. Davg is empirically set to 5 seconds. It is worth not-
ing that the minimum number of clusters in Eq. 9 is two. This
makes SAD possible for utterances shorter than Davg.

4. Classifiers for Speech Activity Detection
Both clustering algorithms result in a set of clusters that are
highly pure (see Table 1). Each of these clusters C is mostly
one type i of data:

i ∈ {Speech,NonSpeech} (10)

The following sections present two classification techniques,
namely GMM and I-Vectors, and the score-level fusion ap-
proach.

4.1. Gaussian Mixture Models

To use GMMs for SAD, we need to learn a GMM Gi for each
type i from a set of enrollment samples. As in [2], the training
is done using the EM algorithm to seek a maximum-likelihood
estimate. Once type-specific models Gi are trained, the proba-
bility that a test cluster Ct is from the class Speech is given by
a log-likelihood ratio (LLR) score:

hgmm (Ct) = ln p (Ct|GSpeech)− ln p (Ct|GNonSpeech) (11)

It is worth noting that the frame-based baseline system used in
our experiments can be viewed as a special case of the above
formulation with Ct being one single frame.

4.2. I-Vectors

Total variability modeling aims to extract low-dimensional fac-
tors wi,j , so-called i-vectors, from samples Ci,j , using the fol-
lowing expression:

µ = m+ Tω (12)

where µ is the supervector of Ci,j , m is the supervector of uni-
versal background model, T is the low-dimensional total vari-
ability subspace, and ω the low-dimensional i-vector, which is
assumed to follow a normal distributionN (0, I).

The procedure to learn the total variability subspace T re-
lies on EM algorithm that maximizes the likelihood over the
training set of labeled speech and non-speech segments.

Once i-vectors are extracted, whitening and length-
normalization [28] are applied for channel compensation pur-
poses. Finally, we tried two back-end classifications: PLDA [6]
and SVM [7]. For PLDA, the LLR of a test cluster Ct being
from the class Speech is expressed as:

hplda (Ct) =
p(wt, wSpeech|Θ)

p(wt|Θ)p(wSpeech|Θ)
(13)

where wt is the test i-vector, wSpeech the mean of speech i-
vectors, and Θ = {F,G,Σε} is the PLDA model. F and G
are the between-class and within-class covariance matrices and
Σε is the covariance of the residual noise.

For SVM, we used the Platt scaling [29] to transform SVM
scores into probability estimates:

hsvm (Ct) =
1

1 + exp (Af(wt) +B)
(14)

where f(wt) is the uncalibrated score of the test sample ob-
tained from SVM [7], and A and B are learned on the training
set using maximum likelihood estimation. In our experiments,
we used SVM with a radial basis function (RBF) kernel, which
we found to work better than a linear kernel.
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4.3. Fusion

MFCC, PLP, and RASTA-PLP features were studied in our
experiment to assess the generality of our proposed method.
We also applied a score-level fusion over the different fea-
tures’ individual SAD systems to evaluate whether cluster-
based SAD provides any incremental benefit over frame-based
SAD. Towards this end, we use logistic regression approach that
has been successfully employed for combining heterogeneous
speaker classifiers [30]. Let a test utterance Ct be processed
by Ns SAD systems. Each system produces an output score
denoted by hs (Ct). The final fused score is expressed by the
logistic function:

hfusion(Ct) = g

(
α0 +

N∑

s=1

αshs(Ct)

)
(15)

where
g(x) =

1

1 + exp(−x)
(16)

and α = [α0, α1, . . . , αN ] are the regression coefficients.

5. Experimental Evaluation
5.1. Experimental Setup

DARPA Robust Automatic Transcription of Speech (RATS)
program [8] is designed to advance the state-of-the-art speech
activity detection in distorted, degraded and noisy communica-
tion channels. Different frequency bands (HF, UHF and VHF)
and different modulation types (narrow-band FM, wide-band
FM, AM, frequency-hopping spread-spectrum and SSB) from
the RATS program are considered in this study.

OpenSAD is an evaluation organized by NIST on part of the
RATS dataset. More precisely, six channels (B, D, E, F, G and
H) from the RATS were used in the training and development
sets and two additional channels (A and C) in the evaluation set.

The training set used to train background models contains
5,485 audio recordings consisting of 1071 hours of data. The
results reported in this study are solely based on the develop-
ment set (part 2) that contains 661 audio recordings consisting
of 169 hours of data. On this set, the average duration of an au-
dio recording is 15 minutes and 19 seconds, with speech regions
comprising 35.12% of the audio.

The evaluation metric used in OpenSAD is the minimum
detection cost function, given by:

minDCF = γFAR + (1− γ)FRR (17)

where FAR is the false alarm rate and FRR is the false rejection
rate. The weight γ is set to 0.25 to penalize the missed detection
of speech more heavily. While the official evaluation metric in
OpenSAD allows a 2-second collar around speech regions, we
consider a strict protocol with no collar that is more adequate
for applications such as speaker and language recognition. The
strict protocol also avoids any uncontrolled bias introduced by
the collar factor. In addition, we impose a global threshold to
make SAD systems as channel-independent as possible.

The hyper-parameters of each structuring technique,
namely λ andNX for the GLR/BIC segmentation,Dmin for BIC
hierarchical clustering, and Davg for K-means and GMM clus-
tering, were tuned to maximize the speech detection accuracy
(i.e. to reduce minDCF).

Regarding the SAD classifiers, we found that 32 compo-
nents for the GMM models (both the Speech and NonSpeech

Table 1: Purity of clusters and accuracy of segmentation, segmentation
+ HAC clustering, K-means clustering, and K-means + GMM cluster-
ing. MFCC features produce the purest clusters under GLR/BIC, while
PLP produces the purest clusters under K-means + GMM.

Method Metric MFCC PLP RASTA-PLP

Segmentation
Purity (%) 94.5 94.2 93.6
minDCF 0.131 0.134 0.142

Segmentation
+ HAC

Purity (%) 92.2 91.8 90.9
minDCF 0.122 0.124 0.122

K-Means
Purity (%) 84.2 86.8 85.4
minDCF 0.237 0.226 0.250

K-Means +
GMM

Purity 88.7 90.2 90.2
minDCF 0.211 0.196 0.210

models in the GMM-based system and the UBM model in the
I-Vector system) and a rank of 100 for T provide a good trade-
off between accuracy and speed.

5.2. Effect of Cluster Purity

Table 1 reports the purity of each of the clustering techniques
with regards to MFCC, PLP, and RASTA-PLP features. We use
13-dimensional acoustic features for segmentation and HAC
clustering, while we additionally use their first and second
derivatives (i.e. 39-dimensional features) for K-means and
GMM clustering. This ensures high accuracy in detecting short-
duration segments3. To assess the correlation between cluster
purity and SAD accuracy, we report the SAD results obtained
when applying a MFCC-based I-Vector + PLDA system on top
of the clustered data.

It is worth noting that temporal smoothing on speech seg-
ments was not applied in this experiment in order to assess the
discrimination power of the raw SAD scores.

Table 1 shows that GLR/BIC segmentation achieves the
highest purity, while this segmentation followed by BIC hierar-
chical clustering achieves the highest accuracy with very com-
petitive purity. K-means gets the worst results in terms of purity
and accuracy, but following K-means with GMM clustering im-
proves both the purity and the accuracy across all features.

Furthermore, Table 1 shows that MFCC produces the best
results for GLR/BIC segmentation + BIC hierarchical cluster-
ing, while PLP produces the best results for K-means + GMM
clustering. In the remaining experiments, we will apply the
clustering techniques using their best feature matches.

5.3. Accuracy Without Smoothing

Table 2 summarizes the accuracy of SAD systems under the
different data structuring techniques. Both overall and channel-
specific minDCF values are reported. Similarly to the previ-
ous experiment, the acoustic features used in the classifier are
MFCC and the temporal smoothing is not applied. Table 2
shows not only that segmentation followed by HAC cluster-
ing produces the highest accuracies, but also that the SAD sys-
tem based on I-Vectors and SVM outperforms its competitors
under this data structuring with an overall minDCF of 0.115.
It also shows that all proposed systems outperform the frame-
based GMM baseline, which achieves an overall minDCF of
0.242. Interestingly, Table 2 also shows that channel F is among
the most difficult channels, with the best system achieving a

3The computation of determinants in Eq. 5 requires that the mini-
mum number of feature vectors necessary to model a Gaussian distribu-
tion to be strictly greater than the feature dimension.
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Figure 3: Performance of the baseline and proposed systems using
MFCC, PLP, and RASTA-PLP. The clustering is K-Means + GMM.

minDCF of 0.141. This is because channel F contains a low-
frequency noise component with very high energy that is hard
to distinguish from the speech signal.

5.4. Accuracy After Smoothing

Table 3 reports the accuracy of the same SAD systems presented
in Table 2, but after smoothing. Table 3 clearly shows that the
accuracy of all SAD systems increased. The gain ranges from
40% to 222% depending on the system.

For the frame-based baseline system, minDCF dropped
considerably from 0.242 to 0.075. K-Means + GMM cluster-
ing achieved the best overall performance, with minDCF for
the I-Vector + SVM classifier dropping to 0.069.

It is worth noting that SVM performed better than PLDA.
This is most likely because SAD is a binary classification task.
Interestingly, the best SAD system without smoothing (Seg-
mentation + HAC) improved by only 55% with smoothing
(from 0.115 to 0.074), which was not enough to outperform the
smoothed K-means + GMM clustering. The K-means + GMM
clustering will be used in the following experiment.

5.5. Accuracy Across Features

Fig. 3 compares the proposed cluster-based I-Vector and GMM
systems against the frame-based GMM baseline across MFCC,
PLP, and RASTA-PLP features. It also presents the results of
the score-level fusion for the three systems.

Fig. 3 clearly shows that cluster-based SAD systems out-
perform the baseline for all features. The relative improvement
is 8%, 6%, 17% and 7% for MFCC, PLP, RASTA-PLP and the
fusion, respectively. Results in Fig. 3 suggest that RASTA-PLP
is more suitable for cluster-based SAD, while PLP is more suit-
able for frame-based SAD. Additionally, Fig. 3 shows that the
I-Vector system is superior to GMM, except for RASTA-PLP
features4.

6. Conclusions
This paper introduces I-Vectors for speech activity detection.
This is facilitated by first clustering the data, and then applying
I-Vectors at the cluster level. Experimental results on the chal-
lenging RATS dataset in the context of the 2015 NIST Open-
SAD evaluation show that the proposed approach outperforms
the baseline frame-based GMM by up to 17% of relative im-
provement. Future work will focus on evaluating the impact of
the proposed SAD technique on speaker recognition.

4Further analysis of per-channel performance for RASTA-PLP fea-
tures reveals that I-Vector outperforms GMM for all channels except the
difficult channel F.
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Table 2: Performance summary of SAD systems with regards to different data structuring techniques without temporal smoothing. The features used
for SAD are MFCCs.

Data structuring SAD classifier Overall B D E F G H
Frame-based (Baseline) GMM 0.242 0.287 0.254 0.274 0.194 0.193 0.265

Segmentation
GMM 0.131 0.132 0.131 0.101 0.185 0.119 0.105

I-Vector + PLDA 0.131 0.141 0.135 0.105 0.158 0.124 0.121
I-Vector + SVM 0.120 0.130 0.125 0.098 0.149 0.106 0.108

Segmentation
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GMM 0.133 0.130 0.133 0.103 0.197 0.118 0.107
I-Vector + PLDA 0.122 0.132 0.124 0.093 0.157 0.112 0.110
I-Vector + SVM 0.115 0.118 0.123 0.091 0.144 0.106 0.101

K-Means
GMM 0.199 0.269 0.251 0.130 0.187 0.191 0.153

I-Vector + PLDA 0.226 0.257 0.247 0.205 0.201 0.230 0.210
I-Vector + SVM 0.226 0.251 0.244 0.216 0.206 0.217 0.225

K-Means
+ GMM

GMM 0.150 0.201 0.182 0.105 0.141 0.145 0.117
I-Vector + PLDA 0.196 0.230 0.199 0.191 0.169 0.199 0.190
I-Vector + SVM 0.200 0.234 0.197 0.198 0.175 0.193 0.211

Table 3: Performance summary of SAD systems with regards to different data structuring techniques after temporal smoothing. The features used
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