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Abstract
Linear Discriminant Analysis (LDA) is one of the

most widely-used channel compensation techniques in
current speaker and language recognition systems. In this
study, we propose a technique of Between-Class Covari-
ance Correction (BCC) to improve language recognition
performance. This approach builds on the idea of Within-
Class Covariance Correction (WCC), which was intro-
duced as a means to compensate for mismatch between
different development data-sets in speaker recognition. In
BCC, we compute eigendirections representing the multi-
modal distributions of language i-vectors, and show that
incorporating these directions in LDA leads to an im-
provement in recognition performance. Considering each
cluster in the multi-modal i-vector distribution as a sep-
arate class, the between- and within-cluster covariance
matrices are used to update the global between-language
covariance. This is in contrast to WCC, for which the
within-class covariance is updated. Using the proposed
method, a relative overall improvement of +8.4% Equal
Error Rate (EER) is obtained on the 2015 NIST Language
Recognition Evaluation (LRE) data. Our approach of-
fers insights toward addressing the challenging problem
of mismatch compensation, which has much wider appli-
cations in both speaker and language recognition.

1. Introduction
Recent developments in language recognition have fo-
cused on exploiting Deep Neural Network (DNN) based
i-vector extraction methods [1]. However, after i-vectors
have been extracted, there remains the need to apply
channel compensation techniques prior to the scoring
stage.

In this study, we focus on adapting Linear Discrimi-
nant Analysis (LDA) based channel compensation to im-
prove overall system performance. In language recogni-
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tion, LDA aims to compute a reduced set of dimensions
onto which i-vectors can be projected, so that variabil-
ity between same-language samples can be minimized
while at the same time maximizing the variability be-
tween different-language samples. This is accomplished
by maximizing the ratio of between-language covari-
ance to within-language covariance. Sources of within-
language variation can be different channels, speakers,
acoustic environments or speaking styles. On the other
hand, differences between languages occur mainly due to
different phonetic contents.

NIST conducted a Language Recognition Evaluation
(LRE) in 2015 [2], where they released data correspond-
ing to twenty languages. All the data was from con-
versational telephone speech and broadcast narrowband
speech, resulting in considerable within-language and
between-language variability. Furthermore, languages
were grouped together based on their phonetic similari-
ties. There were a total of six clusters into which all the
twenty languages were divided. The main motivation be-
hind our approach is to use this additional information
related to language clusters in order to improve the sys-
tem performance.

In analyzing the data, we found that the distribution
of the full pool of language i-vectors is multi-modal, with
each mode corresponding to a separate language clus-
ter. Similar observations have been made in recent stud-
ies on speaker recognition. In [3, 4, 5, 6], the authors
have shown that based on the source of data, speaker i-
vectors have a multi-modal distribution with each mode
representing its respective source. In [3, 4], the authors
propose a source normalization algorithm to mitigate the
effect of this multi-modality over datasets. They compute
a separate between-speaker covariance matrix for each
distinct data-set and then take average of all the matri-
ces. This essentially reduces the mismatch between the
data-sets by centering them around a global mean. In
[5], the author proposes Inter-Dataset Variability Com-
pensation (IDVC) technique that removes the mismatch
using Nuisance Attribute Projection (NAP). First a sub-
space is computed representing all different data-sets
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and then NAP is used to remove that subspace as an i-
vector pre-processing step. In [6], the authors estimate a
between-dataset covariance that is later added to within-
speaker covariance as Within-Class Covariance Correc-
tion (WCC). This additive term is weighted heavily so
that eigendirections representing the data-set shift are
completely removed from LDA computation.

In the case of language recognition, we want to in-
crease the separation between different language clusters,
rather than removing or reducing it. Hence, in this study,
we propose computing the covariance of different lan-
guage clusters with respect to a global mean, and then
adding it during LDA as Between-Class Covariance Cor-
rection (BCC).

Additionally, since the focus of LRE 2015 was to sep-
arate different languages within the same language clus-
ter, we also computed the covariance of each language
with respect to its local cluster mean, and incorporated
this as an additional term in BCC. A combination of
between-language and within-language additions to BCC
resulted in the best performance improvements.

The paper is organized as follows: Section II reviews
the LDA algorithm and provides the theoretical frame-
work for BCC, Section III describes the language recog-
nition system used in our study, Section IV analyzes the
results and Section V concludes the paper with discussion
on future directions.

2. Linear Discriminant Analyses
LDA attempts to maximize the discrimination between
different language i-vectors by finding a set of dimen-
sions where between-language covariance is maximum
while within-language covariance is minimum. This set
of dimensions is obtained with the following procedure:
First, between-language and within-language covariance
matrices, Sb and Sw respectively, are computed as

Sb =
1

N

L∑

l=1

Nl(µl − µ)(µl − µ)t (1)

Sw =
1

N

L∑

l=1

Nl∑

i=1

(ωl
i − µl)(ω

l
i − µl)

t (2)

The number of languages (or classes) is L. ω is an i-
vector andNl is the number of i-vectors corresponding to
a language l. µl is mean of all the i-vectors belonging to
language l, while µ is global mean of all the total number
of N i-vectors present in the training data-set.

After computation of above scatter matrices, recall
that we are looking for a projection that maximizes the
ratio of between-class to within-class covariance. This is
accomplished by finding a projection matrix that maxi-
mizes the following objective function [7]:

J(V ) =
V tSbV

V tSwV
(3)

Table 1: Languages and their corresponding clusters
Cluster Name Corresponding languages
Arabic Egyptian, Iraqi, Levantine, Maghrebi,

Modern Standard
Chinese Cantonese, Mandarin, Min, Wu
English British, General American, Indian
French West African, Haitian Creole
Slavic Polish, Russian
Iberian Caribbean Spanish, European Spanish,

Latin American Spanish, Brazilian Por-
tuguese

The above relationship is a Rayleigh quotient, and
hence the solution V is the generalized eigenvectors of
the following equation:

SbV = λSwV (4)

The optimal projection matrix is obtained by taking
the columns representing the eigenvectors corresponding
to the largest eigenvalues. The equation has L − 1 non-
zero eigenvalues, thus the optimal matrix can have a max-
imum of L− 1 columns or eigenvectors.

2.1. Between-Class Covariance Correction

The 2015 NIST LRE data contains twenty languages di-
vided into six clusters, as shown in Table 1. The evalu-
ation plan for the LRE focused on distinguishing within-
cluster languages, which are closely related, as can be
observed from Table 1.

To visualize the relative distribution of languages and
language clusters, we use Principal Component Analyses
(PCA) [8]. First, we take the full set of training data and
extract i-vectors corresponding to languages represented
in all the six clusters. We then compute Principal Compo-
nent Analyses (PCA) using a between-cluster covariance
matrix. The top part of Fig 1 shows the language i-vectors
projected through first two bases of PCA. It shows clearly
different modes or clusters into which language i-vectors
are distributed. It is quite apparent that each cluster has
its own corresponding i-vector mean. Next, we want to
see how LDA affects this distribution. Hence, we subse-
quently compute LDA and project the i-vectors through
its first two eigendirections. We observe similar distribu-
tion as PCA, with the exception that some of the clusters
start splitting up into bimodal distributions, particularly
Chinese and Arabic. This happens as LDA attempts to
maximize between-language variation and hence, further
separates different languages within a cluster. This ob-
servation further motivated us to consider adding within-
cluster covariance term to BCC.

In this study, our aim is to maximize the separation
between different clusters, and additionally, between lan-
guages within a given cluster, so that LDA has more
between-language discriminating ability. To accomplish
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Figure 1: Projection of language i-vectors into the first
two bases of PCA and LDA, estimated from between-
cluster covariance.

that, we first compute between-cluster covariance matrix
as:

Sbcc =
1

C

C∑

c=1

(µc − µ)(µc − µ)t, (5)

where Sbcc is the between-cluster covariance, µc is the
mean of cluster c, C is the total number of clusters, and
µ is the global mean of all the language i-vectors.

Next, similar to equation 5, we compute within-
cluster covariance matrix, Swcc as:

Swcc =
1

C

C∑

c=1

Nc∑

i=1

(ωc
i − µc)(ω

c
i − µc)

t, (6)

where, Nc is the total number of i-vectors belonging to
cluster c.

After computing Sbcc and Swcc, they are added to
between-class covariance Sb of LDA as:

Snew
b = Sb + αSbcc + Swcc, (7)

where α is a scaling factor by which we weigh Sbcc.
We assume that the eigendirections represented by

between-cluster covariance matrix has useful between-
cluster discriminatory information. Similarly, within-
cluster covariance matrix has useful between-language
discriminatory information. Therefore, by scaling up and

adding both of them to Sb, we make sure the Fisher Ratio
in LDA for these directions is substantial. In our exper-
iments, we observe that once α is chosen such that the
order of magnitude of values in both Sb and Sbcc is the
same, maximum improvement is obtained. This value of
α was heuristically determined to be 60000. We also ob-
serve that the order of magnitude of Swcc is already sim-
ilar to Sb, so it doesn’t need any scaling.

3. System Description
Figure 2, shows the overall diagram of the system used
in our study. The following Sections describe the main
components.

3.1. Training Data

All the system components use training data provided by
NIST LRE 2015 Organizers. The data was provided in
four parts as described below:

3.1.1. CALLHOME/CALLFRIEND

The first part consisted of CALLHOME and CALL-
FRIEND multi-lingual corpora collected by Linguistic
Data Consortiium (LDC). It consists of telephone con-
versations, of fifteen to thirty minutes duration, between
callers and their friends/relatives. The corpus contains
Egyptian Arabic (95.4 hours), U.S. English (100 hours)
and Mandarin Chinese (71.8 hours).

3.1.2. Previous LRE data

The second part of the training corpus consists of recent
NIST data collected for LRE purposes, and data from
past LRE test sets. It contains both telephone channel
conversations as well as segments extracted from broad-
cast recordings containing narrow-band speech. Table 2,
details all the languages present in this part of training
corpus.

3.1.3. Switchboard-I

The third part of training data consists of release-2 of
Phase-I of Switchboard telephone corpus. It contains
telephone conversations between participants speaking
U.S. English. There are a total of 2438 conversations of
average 6-7 minutes duration, resulting in a total of 270
hours of data approximately.

3.1.4. Switchboard Cellular-II

The final part consists of Switchboard Cellular part-II
telephone corpus. It contains a total of 2020 calls with
participants talking in U.S. English. Each call is around
6-7 minutes duration, resulting in a total of 225 hours of
data approximately. Table 2 shows the duration of data
available for each language in training-set.
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Table 2: Details of languages present in NIST LRE15
training data

Languages Hours
Egyptian Arabic 95.4
Iraqi Arabic 37.2

Levantine Arabic 41.1
Modern Standard Arabic 3.7

Maghrebi Arabic 38.6
British English 0.5
U.S. English 600 (approx.)

Indian English 8.1
Haitian Creole French 2.7
West African French 7.7
Brazilian Portuguese 0.8

Polish 30.8
Russian 18.0

Carribean Spanish 26.9
European Spanish 8.1

Latin American Spanish 6.9
Mandarin Chinese 71.8
Cantonee Chinese 8.1

Wu Chinese 7.7
Min Chinese 3.4

All the training data files greater than one minute in
duration were segmented into shorter segments of 5, 15
and 50 seconds. This was done to reproduce the eval-
uation data distribution of the LRE15 challenge. After
segmentation, the files were divided into train and test
sets in the ratio of around 6:4. That is, out of a total of
119,260 files, 73869 were part of train-set (∼ 60%) and
45391 were part of test-set (∼ 40%).
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Figure 2: System Diagram showing the addition of Be-
tween Covariance Correction (BCC) to LDA .

3.2. Feature Extraction

The Kaldi toolkit [9] is used for the feature and i-vector
extraction parts of the system. First, a speech activ-
ity detector based on log Mel-energy is applied over the
segmented data files. Then, 39-dimensional MFCC fea-
tures (13 + ∆ + ∆∆) are extracted using 20 ms analysis
window and 10 ms frame shift. Shifted Delta Cepstral
(SDC) [10] features are later computed and appended to

Table 3: Language recognition Results for each cluster.
Cluster EER(%) before BCC EER(%) after BCC

α = 60000
Arabic 8.4972 8.068
English 2.5887 2.5354
French 6.0538 4.0359
Iberian 13.149 12.3589
Slavic 23.4586 23.0075
Chinese 6.4031 6.2245

Table 4: Overall Language Recognition Results
Performance Metric (%) Before BCC After BCC

α = 60000
EER 5.6729 5.1927

Accuracy 78.5839 81.276

the MFCC features.

3.3. I-vector Extraction

A Universal Background Model (UBM) with 256 mix-
tures is trained using the train-set features as extracted
above. Then, using the same train-set features, a Total
Variability (TV) matrix is trained. Finally, based on the
UBM and TV matrix, 600-dimensional i-vectors are ex-
tracted for each utterance. The i-vectors are centered,
whitened and length-normalized before LDA is applied
to reduce their dimensions to 19 (number of classes -1).

3.4. SVM

For classification, a discriminative Support Vector Ma-
chine (SVM) classifier is trained using the reduced di-
mension i-vectors extracted as above. A 20 class SVM
with a radial basis function (RBF) kernel is trained using
LIBSVM [11]. Optimal SVM parameters are obtained
via cross-validation. The output log-likelihood score is
taken as the probability of each test i-vector given the
target language class compared with all (19) non-target
language classes (one vs all).

4. Results
Table 3 shows the language recognition performance of
both the baseline system and the improved system, that
is obtained after application of BCC. It can be observed
that for the French cluster, there is a significant improve-
ment in language recognition after BCC, with a relative
improvement of +29.6% in Equal Error Rate (EER). For
other clusters, there is not as significant a change in EER,
although positive trends are observed. There is an overall
relative improvement in system EER of +8.4%. As can
be observed from table 4, system accuracy (ratio of cor-
rect language classifications to total number of trials) also
improved by relative +3.42%.

A confusion matrix is presented in Figure 3, that
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Figure 3: Confusion matrices showing classification
counts of languages among different clusters

Table 5: Results for French cluster
Languages Accuracy (%)

Before BCC After BCC
Haitian Creole 93.07 93.84
West African 38.29 43.35

shows the classification counts of all the languages in dif-
ferent clusters. The numbers on the diagonal are correct
classification counts, while off-diagonal elements repre-
sent misclassification counts. It can be observed that, af-
ter applying BCC, there is an absolute 5.89% increase
in the correct classification counts for Arabic language
cluster and absolute 2.28% increase in the correct clas-
sification counts for English language cluster. Addi-
tionally, motivated by the improvement obtained in lan-
guage recognition for the languages corresponding to the
French cluster, we also compute the number of misclas-
sification errors for those languages. Table 5 shows the
within-cluster errors for French. Both the French lan-
guages show an improvement in classification accuracy,
as indicated by their cluster’s EER performance.

5. Conclusion
In this paper, we used useful information relating to the
multi-modal nature of language data to improve recogni-
tion performance on an LRE 2015 data-set.

We proposed a method of Between-Covariance Cor-
rection (BCC), for which we computed covariance matri-
ces corresponding to between-cluster and within-cluster
variability, and observed that by adding them to the Fisher
ratio of LDA, an improvement in performance is ob-
tained.

For future work, we intend to compute the eigendirec-
tions corresponding to between-cluster and within-cluster
variabilities in a more effective manner to get further im-
provement. Right now, the performance of the system
relies heavily on the scaling parameter α. Future work
will focus more on finding better ways to optimize the
addition of BCC without relying on any scaling parame-
ter.
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