
Deep Neural Network based Text-Dependent Speaker Recognition:
Preliminary Results

Gautam Bhattacharya, Jahangir Alam, Themos Stafylakis, Patrick Kenny

Computer Research Institute of Montreal
Montreal, Canada

Abstract
Recently there has significant research interest in using
neural networks as feature extractors for text-dependent
speaker verification. These types of systems have been
shown to perform very well when a large amount of speaker
data is available for training. In this work we are interested
in testing the efficacy of these methods when only a small
amount of training data is available. Google recently in-
troduced an approach that makes use of Recurrent Neural
Networks (RNNs) to generate utterance-level or global fea-
tures for text-dependent speaker verification. This is in con-
trast to the more established approach of training a Deep
Neural Network (DNN) to discriminate between speakers
at the frame-level. In this work we explore the DNN (feed
forward) and RNN speaker verification paradigms. In the
RNN case we propose improvements to the basic model with
respect to the small training set available to us. Our exper-
iments show that while both DNNs and RNNs are able to
learn the training data, the set used in this study is not large
or diverse enough to allow the them to generalize to new
speakers. While the DNN models outperform the RNN, both
models perform poorly compared to a GMM-UBM system.
Nonetheless, we believe this work serves as motivation for
the further development of neural network based speaker
verification approaches using global features.

1. Introduction
Text-dependent speaker verification is a two-step process. The
system must verify a persons identity while insuring that the
correct pass-phrase was spoken. The latter implicit implies that
the system has knowledge of the utterance’s phonetic content.
This knowledge can then be used to constrain the speaker mod-
elling process [1]. This leads to two major differences between
text-dependent and text-independent speaker verification sys-
tems. Firstly, text-dependent system can be trained with far
less background data. Secondly, text-dependent system are able
to achieve robust verification results with utterances of short-
duration.

Deep Neural Networks (DNNs) are now well established as
a means to learn useful representations or abstractions of real
world data. In text-dependent speaker verification DNNs are
not used for classification directly, but rather as feature extrac-
tors. The approach is two fold. First a (often deep) neural net-
work is trained to discriminate between speakers from a training
set (this is a classification task). After the network is trained, it
is used to extract features for the enrolment and test speakers.
This is done by freezing the parameters of the network and re-
moving the output layer. Typically, the enrolment and test fea-
tures are scored using a simple classifier like cosine distance.

We note that the background / training set used in this work is
too small to train a classifier like Probabilistic Linear Discrim-
inant Analysis (PLDA). The performance of such systems de-
pends quite heavily on the amount of background data available.
Indeed, neural network based speaker verification approaches
have been able to outperform an i-vector/PLDA system on very
large datasets.

In this work we examine the use of neural networks for text-
dependent speaker verification with a small background set.
Specifically, the background set consists of 98 speakers (both
male and female), with 8-15 recordings per speaker. Neural
networks are notoriously difficult to train on small datasets.
The most common strategy to overcome this shortcoming is
to use generative pre-training, or regularization techniques like
dropout [2, 3].

Our findings indicate that on a dataset of this size a neu-
ral network is able to memorize the training set, and is able
to achieve excellent results on closed-set speaker identification
(based on validation set results). Crucially however, the models
are unable to generalize well to new speakers. This fact is re-
flected in the poor performance of the DNN models compared
to a GMM-UMB system.

We focus on the use of Recurrent Neural Networks (RNNs) for
building feature extractors for speaker verification. Contrary
to most of the literature on DNN based text-dependent speaker
verification, we explore and extend a new paradigm for text-
dependent speaker recognition introduced in [4].
We also experiment with the d-vector paradigm [5], which
makes use of a DNN for feature extraction. The primary differ-
ence between the two approaches is that the d-vector approach
classifies each frame of a recording during training, whereas the
RNN approach classifies each sequence or recording. In princi-
ple a DNN can be used to make classifications at utterance level
rather than frame level. The authors of [4] showed that this
approach works better, and a RNN outperforms the DNN. In-
terestingly, our results are contrary to these findings. Indeed the
d-vector approach is able to produce better results than the RNN
approach. We believe that the main reason for this is the fact that
the d-vector approach operates at the frame level. While oper-
ating at the utterance level seems like the most natural thing to
do, working at the frame level gives us many more data-points.
The improvement in speaker verification performance over the
RNN is small, however this gap is more impressive in the case
of closed-set identification.

The rest of the paper is organized as follows. In section 2 we
present a survey of deep neural network approaches for text-
dependent speaker verification. Section 3 gives an overview of
Recurrent Neural Networks (RNNs). Section 4 builds on the
the further elaborates on the idea of utterance-level speaker rep-

Odyssey 2016, June 21-24, 2016, Bilbao, Spain

9

resentation, and proposes some enhancements. In section 5 we
present the details regarding the dataset, model training, as well
as speaker verification results. In Section 6 we summarize our
findings and directions of future work.

2. DNNs for Speaker Verification

In this section we present a survey of DNN based approaches
for speaker verification. DNNs have successfully been inte-
grated into both text-independent and text-dependent verifica-
tion paradigms. Two types of DNNs have been used in speaker
verification - phonetic discriminant DNNs and speaker discrim-
inant DNNs. All the techniques detailed in this section make
use of spectral features as input to the neural network.

2.1. Phonetic Discriminant DNN

A phonetic discriminant DNN refers to a neural network that
classifies each frame of speech as a specific phoneme (or tri-
phone). That is, a DNN trained for speech recognition.

2.1.1. DNNs for collecting Sufficient Statistics

The most successful application of DNNs to speaker verifica-
tion involves the use of a DNN speech recognizer to replace
the GMM-UBM in the i-vector approach. The UBM is used to
collect sufficient statistics in i-vector approach. The basic idea
is to replace the frame alignment posteriors generated by the
GMM with the senone posteriors produced by the DNN [6, 7].
To our knowledge this approach has only been applied in a text-
independent setting.

2.1.2. Phonetic Bottleneck Features

Another approach that makes use of a phonetic discriminant
DNN for speaker verification is the so-called bottleneck or tan-
dem features approach [8]. A DNN is trained in supervised
mode using the triphone state labels as targets. Once the net-
work is trained, deep features can be extracted for every speech
frame of a recording. The dimension of the deep feature is usu-
ally kept the same as the spectral feature by means of a bot-
tleneck layer. These features in turn are used to train a back-
end classifier like a GMM-UBM or PLDA. Tandem feature are
formed by combining the deep feature and the spectral feature
corresponding to a given speech frame.

Tandem features have been successfully applied to both text-
independent and text-dependent speaker verification [9, 10]. In
the text-dependent case, the approach was tested on the multiple
pass-phrase task. To our knowledge this works represents the
smallest dataset used for training neural net models.

2.2. Speaker Discriminant DNN

A speaker discriminant DNN is a neural network trained to dis-
criminate between speakers. This type of network would repre-
sent the most natural configuration for speaker recognition / ver-
ification. The predominant approach involves training a super-
vised DNN to discriminate between speakers at the frame level.
The main criticism of this technique is that speaker discrimina-
tion is done based on a time-scale at which phonetic variability
is the dominant type of variability.

2.2.1. d-vectors

In this approach a DNN is trained to discriminate between
speakers at the frame-level. Each speech frame is stacked along
with a fixed number of context frames and is fed as input to the
network. The DNN then needs to classify each frame as belong-
ing to 1-of-N speakers. Where N is the number of background
speakers. This can be seen as the speaker recognition (not veri-
fication) equivalent of a speech recognition DNN. The approach
was studied on the common passphrase task [5].

Once training is complete, the output of the last hidden layer of
the network is used to produce an utterance-level feature for a
speaker. That is, each frame of an utterance is forward propa-
gated through the network, and the hidden activations of all the
frames are averaged to form an utterance-level feature called a
d-vector. The enrolment speaker models are formed by aver-
aging the d-vectors corresponding to the enrolment recordings.
Recently, a similar approach has been studied with convolu-
tional networks [11], however a much larger background set is
used here to tackle the same task.

2.2.2. Multi-task Learning

The authors of [12] approach the multiple pass-phrase task us-
ing multi-task learning. The idea is to train a DNN to make
classifications for both the speaker and phrase identities. This
is achieved by minimizing a composite loss function consisting
of a sum of two cross-entropy losses - one related to the speaker
label and the other to the phrase label. Once again, after training
is complete the DNN is used as a feature extractor to generate
features for a backend classifier. One of the interesting findings
in this work is that the speaker verification performance of deep
features is much worse when using the cosine distance metric as
compared to more sophisticated classifiers like a GMM-UBM
or PLDA. The DNN features can also be combined with the
spectral features to produce tandem features.

2.2.3. Global Features

Google recently introduced a novel approach for text-dependent
speaker verification that makes use of global features [4]. This
work also tackles the common passphrase problem. This
method addresses the main drawback of the d-vector approach,
namely, frame-level speaker classification. This is done by pro-
ducing an utterance-level feature for classification, rather than
classify each speech frame. That is, there is a single label as-
sociated with each utterance or sequence, and not one for every
frame in an utterance.

In the case of a DNN this is achieved by averaging all the
hidden activations of a recording before passing the averaged,
utterance-level feature to the softmax layer of the network. This
work also introduces the use of recurrent neural networks to
produce utterance-level features. In the case of a RNN, the trick
of averaging the hidden activations is not needed as the the hid-
den activation corresponding to the last time-step of the record-
ing is effectively a summary or a global feature of the entire
recording.

The other major contribution of this work is the development
of a novel end-to-end system. This is achieved by using the a
DNN or RNN to first encode both enrolment and test record-
ings. Utterance-level features from both recordings are then
scored using cosine distance before being passed to a logistic
regression layer. Finally a binary decision is made if the two
recordings should be accepted or rejected. The whole network

10

is trained by optimizing the end to end loss.

While both the utterance-level speaker softmax and end-to-end
approaches achieve excellent results, the dataset used in this
work is quite large and hence of potentially less practical use.
Nonetheless, we believe that the use of RNNs to process speech
data and the concept of utterance-level classification for train-
ing DNN feature extractors is a promising direction of research,
and choose to explore it further in this work.

3. Recurrent Neural Networks
Recurrent neural networks (RNNs) can be viewed as a gen-
eralization of of feed-forward nets to sequences of arbitrary
duration. A recurrent network can be converted into a feed-
forward network by unrolling its computational graph in time
[13]. RNNs have been successfully applied to several sequential
problems such as speech and handwriting recognition, machine
translation and language modelling [14, 15, 16].

Another feature that distinguishes a RNN from a DNN is the
recurrent connection (and associated weight matrix), which
makes these networks especially well suited to processing time-
series data. This means that while processing a given time-step
of a sequence, the network has a ‘memory’ of all the previous
time-steps. In terms of the probabilistic model, this recurrent
connection allows the model to condition its prediction at the
current time-step on all previous time-steps. For a detailed treat-
ment of RNNs we refer the reader to [17, 18].

Given a sequence X = {x1, x2, ..., xT }The forward hidden
activation of a RNN is computed sequentially for every time-
step as:

hforward = f(Wihf xt +Whhfht−1 + bhf) (1)

Similarly a backward activation can be computed by consider-
ing the sequence in reverse:

hbackward = f(Wihbxt̂ +Whhbht̂−1 + bhb) (2)

A bi-directional RNN processes a sequence in both the forward
and backward directions [19]. It essentially consists of two
RNNs, one for the forward and the other for the backward direc-
tion. The hidden activations of the forward and backward RNNs
are then combined via concatenation. For a given time-step, an
encoding vector is obtained by concatenating the forward and
backward activations corresponding to that time-step.

h = [hforward ;hbackward] (3)
This concatenated hidden activation is passed to an output

layer which computes:

ŷ = Who.h+ bo (4)

O = g(ŷ) (5)

The choice of non-linear activation function f in equations (1)
and (2) is an important factor while working with RNNs. A
simple RNN with sigmoid activation functions is known to suf-
fer from the vanishing gradient problem [20]. A popular choice
to avoid this difficulty is to use RNNs with Long-Short Term
Memory (LSTM) cells [21]. LSTMs were specifically designed
to avoid the vanishing gradient problem. Recently, Gated Re-
current Units (GRU) were proposed to also avoid the vanishing
gradient problem [22].

4. Utterance-Level Features
The key idea behind using a RNN to produce utterance-level
features is based on their ability to generate a sequence sum-
maries. Given a sequence X = {x1, x2, ..., xT }, we can for-
ward propagate the sequence through an RNN to produce a re-
current embeddings R = {r1, r2,, rT }. The recurrent em-
bedding corresponding to the last time-step of the sequence,
rT , can be considered as the summary of the entire sequence.
We refer to this recurrent embedding as the summary vector.
This summary vector is then used by the RNN to predict the
speaker’s identity by means of a softmax layer, which produces
a probability distribution over the speakers in the training set.

We build on this approach by introducing bi-directional recur-
rence into the model, as well as some other enhancements that
are motivated by the data-sparse nature of our problem.

4.1. Last-Step Speaker Representation

This model is a version of the approach in [4], the only
difference being the inclusion of bi-directional recurrence in
the model. Here a bi-directional RNN is used to extract an
utterance-level feature from a recording and then use this fea-
ture to discriminate between speakers in a background set. Un-
like a vanilla RNN, only the last hidden activation correspond-
ing to the last time-step is connected to the softmax layer.The
model processes (forward-propagates) each utterance and learns
a corresponding summary vector.

hforward(t) = f(Wihf xt +Whhfht−1 + bhf) (6)

hbackward(t) = f(Wihbxt +Whhbht−1 + bhb) (7)

For a sequence X = {x1, x2,, xT }, the concatenation hid-
den activations hsummary = [hforward(T);hbackward(1)]
corresponds to the summary vector. During training, the sum-
mary vector is subjected to a linear transformation and is fed to
a softmax activation function. The softmax function represents
a distribution over speakers in the training set.

ŷ = Who.hsummary + bo (8)

O = softmax(ŷ) (9)

At runtime, the softmax layer is removed and the model is used
to extract summary vectors for the enrolment and test utter-
ances.

4.2. Averaged Speaker Representation

One of the drawbacks of the last-step speaker representation is
that the recurrent embedding corresponding to the last time-step
of the utterance needs to summarize the entire sequence. It has
been shown that this approach works well for sequences be-
tween 80-100 time-steps, however performance deteriorates as
the sequences get longer. In our case we are dealing with se-
quences ranging from 150-700 frames and hence we can expect
the speaker-softmax approach to struggle given this data.

A simple approach to alleviate this problem is to average all the
recurrent embeddings, and feed the resulting feature to the soft-
max layer. This also insures that all of the data is used in order
to make classification decisions, which is helpful for speaker
verification performance under sparse-data conditions.

11

4.3. Learned Speaker Representation

Rather that simply average the hidden activation of recording to
produce an utterance level feature, we propose to learn the best
combination of these activations. The basic idea is to use a small
feedforward neural network to learn the best way to combine
recurrent embeddings (weighted sum) of an utterance in order
to classify the utterance correctly. This approach is motivated
by the notion of an attention model, originally introduced for
machine translation [23]. In the context of our problem, the
network serves as a ‘combination’ model.

As before, the first step involves forward propagating the input
sequence through the RNN:

hforward(t) = f(Wihf xt +Whhfht−1 + bhf) (10)

These hidden activations are then processed by a small neural
network (combination model) which assigns a scalar score to
each hidden activation/recurrent embedding. The combination
model is parameterized by a single-layer feed-forward neural
network. The individual scores are then normalized using the
softmax function. This normalization also provides a proba-
bilistic interpretation of the scores assigned by the attention
model. The output of the softmax function can then be inter-
preted as a sequence of weights, one for each time-step. These
weights can be used to produce a weighted sum of the RNN
encoding.

ej = a(hforward(j)) (11)

c =
eej∑
j e

aj
(12)

f̂ =
T∑

i=1

h(i).ci (13)

Where ej represents the combination model, c is the softmax
distribution over recurrent embeddings and h(i) represents a
given hidden activation. Finally, the weighted-sum vector f̂ is
linearly transformed and passed to the softmax function.

ŷ = Who.f̂ + bo (14)

O = softmax(ŷ) (15)

Note that this second softmax is a distribution over the speakers
in the training set.

5. Experiments and Results
In this section present details regarding the network architec-
tures, network training and speaker verification performance.
All the RNN models studied in this work were built using
Theano and the Lasagne deep learning package [24, 25].

5.1. Datasets

In this work we are interested in evaluating the performance of
recurrent neural networks on a small dataset. For the purposes
of this preliminary study, we use a proprietary dataset consist-
ing of a single pass-phrase. The development set consists of
multiple sessions from 98 speakers, totalling 1547 recordings.
For testing there are 230 unique speaker models and 1164 test
utterances. Some of the enrolment speakers have been recorded

under different channel conditions (multiple times). However
the majority of the speaker models consist of 3 recordings each.

The spectral features used in this work consist of 20-
dimensional mel-frequency cepstral coefficients (MFCC). We
only use the static coefficients. We also remove silence frames
from all the recordings.

For the RNN models, each recording is the training set is treated
as a datapoint. The input to the DNN is a 10ms frame of speech,
along with left and right context frames. We make use of a 11
frame context window around the central frame.

5.2. Network Architectures

The primary obstacle we faced during this work related to train-
ing networks on a small dataset. While most neural network ar-
chitectures are known to overfit such datasets, this is especially
true of recurrent networks. Nonetheless, we are interested in
evaluating the performance of RNNs on this dataset as we be-
lieve it will provide useful insights for future work. We perform
experiments with single-layer RNNs of different sizes, ranging
from 100 to 700 hidden units.

Unlike recurrent architectures, there has been significantly more
effort to improve the performance of DNNs on small training
sets. Techniques like dropout regularization are now fairly com-
monplace in DNN training, however it is not as straightforward
to apply to recurrent networks. Maxout networks [26] are an-
other approach that has been shown to perform well on small
datasets. Maxout networks differ from the standard DNNs in
that hidden units at each layer are divided into non-overlapping
groups. Each group generates a single activation via the max
pooling operation. We experimented with DNN architectures
of different depth, ranging from 3 to 7 hidden layers, and layer
sizes between 200 to 700 hidden units. We made use of Rec-
tified Linear Units (RELU) for the non-linear activation func-
tions.

The second challenge we faced was specific to recurrent archi-
tectures. In the context of speech, RNNs operate at the level of
entire recordings (variable length sequences) whereas the natu-
ral way to use DNNs is to make frame-level predictions. This is
an important point as it implies that a DNN would receive many
more data examples than a RNN from the same dataset. The
recordings in our dataset range from 150 to 700 frames (10 ms),
and as such are quite long. As stated in section 4, the key idea in
the RNN speaker-verification paradigm is based on its ability to
produce a fixed-size vector that summarizes the whole record-
ing. Ideally, we would like the summary vector to memorize
the entire sequence, however this becomes more challenging as
sequence length increases.
One way to deal with long sequences is to increase the depth of
the network [27], however this tends to make the network more
prone to overfitting. We experimented with RNNs that are 2 and
3 layers deep, however these models did not perform as well as
single-layer networks.

5.3. Network Training

A common feature of all the models used in this work is the
softmax distribution over speakers in the training set. Conse-
quently all models are trained by minimizing cross-entropy loss,
and training is done via backpropagation. For updating model
parameters, we tried several optimizers and achieved our best
results using the ADAM adaptive learning rate algorithm and
stochastic gradient descent with momentum for the RNN and

12

DNN models respectively. A learning rate of 0.001 for training
all models. We also used mini-batches consisting of 32 utter-
ances in the case of the RNN, and 256 frames (with context) for
the DNN. RNNs are known to suffer from an exploding gradi-
ent problem, and consequently we clip the gradients as in [28].
For all the models, training is halted based on the principle of
early-stopping [29]. In the case of networks with dropout, a
dropout layer was inserted after every hidden layer of the net-
work. A fixed dropout percentage of 0.4 was consistently used
throughout our experiments.

5.4. Closed-Set Identification

While the the size of the validation set used in this work is quite
small, performance on this set provides us with useful insight
regarding the learning process, and this also translates to per-
formance on speaker verification tasks. It also gives us an indi-
cation of how well the networks are able to cope with channel
variability.

Interestingly, the closed-set identification performance of the
RNNs and DNNs differs significantly. This is perhaps due to
the larger number of data points seen by the DNN. The uni-
directional RNN (basic speaker-softmax) achieved a classifica-
tion accuracy of 57% on the validation set, which represents
the worst performance of the networks used in this study. A
bidirectional network is able to do considerably better, with a
classification accuracy of 65%. The averaged speaker-softmax
model does marginally better, with an accuracy of 68%. The
augmentation of the attention model improves the validation ac-
curacy considerably, achieving 82%. In the case of the DNN
models, the Maxout network achieve the best classification ac-
curacy of 98%, which was slightly better than the vanilla DNN
model with RELU units that achieved 97% accuracy. Surpris-
ingly dropout regularization did not affect performance in the
case of either model (maxout and vanilla DNN), however as
noted in the previous section, this hyper-parameter was not op-
timized.

5.5. Speaker Verification

After the RNN and DNN models are trained, we use them as
feature extractors by removing the softmax layers of the net-
works. The RNN produces a hidden activation corresponding
to every time-step in a recording. Depending on the model, an
utterance level feature is produced either by averaging, a com-
bination model or by simply taking the last hidden activation
or summary vector. For DNNs, the output of the last hidden
layer represents a frame-level hidden activation. We follow the
standard approach of forward propagating the whole recording
through the network and form an utterance-level feature by av-
eraging the hidden activations for every time-step. In this way
utterance-level features can be extracted for enrolment and test
speakers. A speaker verification score is calculated using the
cosine distance metric.

Table 1: RNN Speaker Verification Results.

Network Architecture EER

Unidirectional spk-softmax 13.53
Bidirectional spk-softmax 11.60
Bidirectional avg-softmax 10.45
Bidirectional attn-softmax 8.84

Table 2: DNN Speaker Verification Results.

Network EER

DNN 8.48
DNN+dropout 8.25

Maxout 7.88
Maxout+dropout 7.88

Gmm-UBM 3.6

Table 1 displays the speaker verification performance of the dif-
ferent RNN architectures used in this study. The results cor-
respond to our best performing models had 400 hidden units.
The bidirectional speaker-softmax model clearly outperforms
the unidirectional model with an ERR of 11.60 as compared
to 13.53. The averaged speaker softmax representation does
slightly better than the basic model with an EER of 10.45 as
compared to 11.60. The attention speaker-softmax was the best
performing model, achieving an EER of 8.84. This result sug-
gests that a combination of recurrent embeddings to form an
utterance-level feature represents the best approach for speaker
verification, at least under data-sparse conditions.

The DNN speaker verification models show slightly better per-
formance as compared to the RNN as reflected by table 2. The
Maxout network achieves the best performance with an error
rate of 7.88. We note again that dropout regularization had only
a marginal effect on performance. Our best performing network
consisted of 3 hidden-layers with 500 hidden units per layer.
That being said, the performance of both RNN and DNN mod-
els is significantly worse that the GMM-UBM (256 component)
baseline which achieves an error rate of 3.6.

6. Discussion

We also see that by asking the network to learn the best combi-
nation of hidden activations/recurrent embeddings, we are able
to achieve our best speaker verification results. Moreover this
approach works better than simple averaging. Consequently we
are interested in integrating this model into other neural net-
work architectures. Moreover, the approach of combining re-
current embeddings appears to produce better results than using
the summary vector as a feature for text-dependent speaker ver-
ification.

7. Conclusions
In this work we explore the use of DNNs and RNNs for text-
dependent speaker verification. Our main contribution is eval-
uating the potential of global or utterance-level features. The
results of our experiments suggest that while both DNN and
RNN models are able to memorize the speakers in the training
set, their ability to generalize to new speakers is quite poor.

For the RNN models we experimented with three types of
global features, and our experiments show that combining all
the hidden activations of a recording to generate a global fea-
ture works better than using the summary vector (hidden acti-
vation corresponding to the last time-step of a sequence) as a
global feature. Furthermore, using an additional neural network
to learn the weights of the hidden activation leads to further
improvement. The speaker verification results of these mod-
els suggest that there is room for further improvement as the
RNN based systems perform poorly as compared to a GMM-

13

UBM system. One approach that may potentially improve per-
formance would be to use the RNN to produce tandem features
in order to train a GMM-UBM system.

The DNN based approach outperformed the RNN models on
both closed-set identification as well as speaker verification.
One potential reason for this is the fact that the DNN sees many
more labelled datapoints during training than the RNN. In or-
der to make the comparison fair, we could run the RNN models
over sub-sequences corresponding to the input to the DNN. We
hope to pursue this direction of research in future work.

8. References
[1] Anthony Larcher, Kong Aik Lee, Bin Ma, and Haizhou

Li, “Text-dependent speaker verification: Classifiers,
databases and rsr2015,” Speech Communication, vol. 60,
pp. 56–77, 2014.

[2] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh,
“A fast learning algorithm for deep belief nets,” Neural
computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[3] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: A sim-
ple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[4] Georg Heigold, Ignacio Moreno, Samy Bengio, and Noam
Shazeer, “End-to-end text-dependent speaker verifica-
tion,” arXiv preprint arXiv:1509.08062, 2015.

[5] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio
Lopez Moreno, and Jorge Gonzalez-Dominguez, “Deep
neural networks for small footprint text-dependent
speaker verification,” in Acoustics, Speech and Signal
Processing (ICASSP), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 4052–4056.

[6] Yun Lei, Luciana Ferrer, Moray McLaren, et al., “A novel
scheme for speaker recognition using a phonetically-
aware deep neural network,” in Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 1695–1699.

[7] Patrick Kenny, Vishwa Gupta, Themos Stafylakis, P Ouel-
let, and J Alam, “Deep neural networks for extracting
baum-welch statistics for speaker recognition,” in Proc.
Odyssey, 2014, pp. 293–298.

[8] Tianfan Fu, Yanmin Qian, Yuan Liu, and Kai Yu, “Tandem
deep features for text-dependent speaker verification.,” in
INTERSPEECH, 2014, pp. 1327–1331.

[9] Fred Richardson, Douglas Reynolds, and Najim Dehak,
“A unified deep neural network for speaker and language
recognition,” arXiv preprint arXiv:1504.00923, 2015.

[10] Yuan Liu, Yanmin Qian, Nanxin Chen, Tianfan Fu,
Ya Zhang, and Kai Yu, “Deep feature for text-dependent
speaker verification,” Speech Communication, vol. 73, pp.
1–13, 2015.

[11] Yu-hsin Chen, Ignacio Lopez-Moreno, Tara N Sainath,
Mirkó Visontai, Raziel Alvarez, and Carolina Parada,
“Locally-connected and convolutional neural networks for
small footprint speaker recognition,” in Sixteenth Annual
Conference of the International Speech Communication
Association, 2015.

[12] Nanxin Chen, Yanmin Qian, and Kai Yu, “Multi-task
learning for text-dependent speaker verification,” in Six-
teenth Annual Conference of the International Speech
Communication Association, 2015.

[13] Yoshua Bengio Ian Goodfellow and Aaron Courville,
“Deep learning,” Book in preparation for MIT Press,
2016.

[14] Alex Graves and Navdeep Jaitly, “Towards end-to-end
speech recognition with recurrent neural networks,” in
Proceedings of the 31st International Conference on Ma-
chine Learning (ICML-14), 2014, pp. 1764–1772.

[15] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence
to sequence learning with neural networks,” in Advances
in neural information processing systems, 2014, pp. 3104–
3112.

[16] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cer-
nockỳ, and Sanjeev Khudanpur, “Recurrent neural net-
work based language model.,” in INTERSPEECH, 2010,
vol. 2, p. 3.

[17] Alex Graves, Supervised sequence labelling, Springer,
2012.

[18] Ilya Sutskever, Training recurrent neural networks, Ph.D.
thesis, University of Toronto, 2013.

[19] Mike Schuster and Kuldip K Paliwal, “Bidirectional re-
current neural networks,” Signal Processing, IEEE Trans-
actions on, vol. 45, no. 11, pp. 2673–2681, 1997.

[20] Sepp Hochreiter, “The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions,” International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–
116, 1998.

[21] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[22] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,”
arXiv preprint arXiv:1406.1078, 2014.

[23] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio,
“Neural machine translation by jointly learning to align
and translate,” arXiv preprint arXiv:1409.0473, 2014.

[24] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Bengio,
“Theano: a cpu and gpu math expression compiler,” in
Proceedings of the Python for scientific computing con-
ference (SciPy). Austin, TX, 2010, vol. 4, p. 3.

[25] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Olson,
SK Sønderby, D Nouri, D Maturana, M Thoma, E Batten-
berg, J Kelly, et al., “Lasagne: First release,” Zenodo:
Geneva, Switzerland, 2015.

[26] Ian J Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio, “Maxout net-
works,” arXiv preprint arXiv:1302.4389, 2013.

[27] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Sequence
to sequence learning with neural networks,” in Advances
in neural information processing systems, 2014, pp. 3104–
3112.

14

[28] Alex Graves, “Generating sequences with recurrent neural
networks,” arXiv preprint arXiv:1308.0850, 2013.

[29] Yoshua Bengio, “Practical recommendations for gradient-
based training of deep architectures,” in Neural Networks:
Tricks of the Trade, pp. 437–478. Springer, 2012.

15

