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Abstract
Making speaker verification (SV) systems robust to

spoofed/mimicked speech attacks is very important to make its
use effective in security applications. In this work, we show
that using a proximal support vector machine backend classifier
with i-vectors as inputs (i-PSVM) can help improve the perfor-
mance of SV systems for mimicked speech as non-target tri-
als. We compared our results with the state-of-the-art baseline
i-vector with cosine distance scoring (i-CDS), i-vector with a
backend SVM classifier (i-SVM) and cosine distance features
with an SVM backend classifier (CDF-SVM) systems. In i-
PSVM, proximity of the test utterance to the target and non-
target class is the criteria for decision making while in i-SVM,
the distance from the separating hyperplane is the criteria for
the decision. It was seen that the i-PSVM approach is advan-
tageous when tested with mimicked speech as non-target trials.
This highlights that proximity to the target speakers is a better
criteria for speaker verification for mimicked speech. Further,
we note that weighting the target and non-target class exam-
ples helps us further fine tune the performance of i-PSVM. We
then devised a strategy for estimating the weights for every ex-
ample based on its cosine distance similarity with respect to the
centroid of target class examples. The final i-PSVM with exam-
ple based weighting scheme achieved an improvement of 3.39%
absolute in EER when compared to the best baseline system, i-
SVM. Subsequently, we fused the i-PSVM and i-SVM systems
and results show that the performance of the combined system
is better than the individual systems.

1. Introduction
Speaker verification (SV) is the process of verifying the iden-
tity claim of a person from his/her spoken utterance. Improv-
ing the robustness of speaker verification (SV) systems against
spoofed/mimicked speech is extremely important to make its
use in critical applications effective [1]. Spoofing is a tech-
nique in which the data content in the speech utterance is mod-
ified or corrupted, maintaining the acoustic characteristics of
the speech signal [2, 3]. Spoofing attacks are mainly of four
types: mimicry, replay, speaker adapted speech synthesis and
voice conversion [1]. In this work, we emphasize on inten-
tional speech modifications caused by mimicking the target
speaker’s speech. Lack of a standard speaker recognition eval-
uation database with adequate number of impersonators mim-
icking the voices of the target speakers is a major bottleneck for
pursuing research in this direction.

We created a mimicry database, Amrita Speaker Recogni-
tion Evaluation (SRE) Database [2], with 115 target speakers

and 76 impersonators mimicking the voices of the target speak-
ers to benchmark the performance of speaker verification al-
gorithms against mimicked speech test conditions. We com-
pared the performance of different state-of-the-art SV systems,
i-vector with cosine distance scoring (i-CDS) [4], i-vectors with
a backend maximum margin support vector machine classifier
(i-SVM) [5, 6] and cosine distance features (CDF) with a back-
end SVM classifier (CDF-SVM) [7] systems developed using
Amrita SRE Database [2]. We also compared the effective-
ness of different short term cepstral features, mel frequency
cepstral coefficients (MFCC), power normalized cepstral co-
efficients (PNCC) [8] and delta spectral cepstral coefficients
(DSCC) [9], and found that MFCC outperforms other features
when tested with mimicked speech. From the experimental re-
sults [2], it was seen that the impersonator mimicking the target
speakers caused significant degradation in the performance of
all speaker verification systems when compared with the sys-
tems developed using the target and non-target trials as in NIST
SRE, without mimicked voices. In a subsequent work [10], we
evaluated the advantage of gammatone frequency cepstral co-
efficients (GFCC) [11] as an input feature in reducing the false
alarm probabilities (FAP) of SV systems. From the experimen-
tal results it was observed that the CDF-SVM with an inter-
section kernel developed using GFCC achieves the minimum
FAP. However, the best overall performance was obtained with
MFCC as input features and hence we use MFCC for all exper-
iments in this work.

We focus on enhancing the robustness of SV systems
against mimicked speech utterances as non-target trials using i-
vectors as inputs to a proximal support vector machine backend
classifier (i-PSVM). In i-PSVM [12, 13], proximity to the target
and non-target class is the criteria for decision making while in
i-SVM the distance from the separating hyperplane is the crite-
ria for the decision. It was seen that the i-PSVM approach is
advantageous when tested with mimicked speech as non-target
trials. In this context, we use PSVM instead of separating mar-
gin SVM as a backend classifier and experiment using different
weighting factors for the target and non-target speaker classes.
We then present the details of the i-PSVM and compare its per-
formance with the state-of-the-art baseline SV systems. Later,
we refine and devise an algorithm for an example based weight-
ing factor for further enhancing the performance of i-PSVM.
Weights for each example are calculated based on its cosine dis-
tance similarity with respect to the centroid of the target class
examples. The i-PSVM with example based weighting scheme
achieved an improvement of 4.93%, 3.39%, and 4.44% abso-
lutes in EER when compared to the baseline i-CDS, i-SVM and
CDF-SVM systems respectively. Finally, we fused the i-PSVM
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and i-SVM to obtain an additional improvement of 0.51% ab-
solute in EER, making an overall performance improvement of
3.90% absolute in EER compared to the best baseline, i-SVM.

The rest of the paper is organized as follows. Section 2 dis-
cusses SVMs, which also includes a brief description of maxi-
mum margin SVM, PSVM and PSVM with custom c. A brief
review of the state-of-the-art systems, i-CDS, i-SVM, i-PSVM,
CDF-SVM and CDF-PSVM is provided in section 3. The de-
tails of Amrita SRE Database is presented in section 4. In sec-
tion 5, experiments and results are discussed and finally, section
6 concludes.

2. Support Vector Machines
Support Vector Machines (SVM) [12, 13] are supervised learn-
ing algorithms used for solving binary classification problems.
SVMs find the optimum hyperplane by maximizing the sepa-
rating margin between the two classes, where the margin is the
sum of distances from the hyperplane to the nearest data points
belonging to each of the two separate classes. A detailed de-
scription on the formulation of maximum margin SVM, proxi-
mal SVM (PSVM) and PSVM with custom c are described in
what follows. We refer to the maximum margin SVM as simply
SVM throughout this work. For simplicity, we elaborate only
on using linear kernels, and extending the formulation to non-
linear kernels is trivial and is not discussed in this work [12, 13],
though we used non-linear kernels throughout.

2.1. Maximum Margin SVM

Consider a given training set,

S = {xi, yi}m+n
i=1 (1)

where, xi ∈ Rk, yi ∈ {−1,+1} and
A = (x1, x2, ..., xm, xm+1, ..., xm+n)

T is the training data
matrix in which the first m examples correspond to the tar-
get class and the next n examples correspond to the non-target
class. The objective of SVM is to find the optimum seperating
hyperplane,

min
w,ξ

1

2
wTw +

c

2
ξT ξ

subject to : D(Aw − eb) ≥ e− ξ
ξ ≥ 0 (2)

where,
e = (1, 1, ..., 1)T , ξ = (ξ1, ξ2, ..., ξm, ξm+1, ..., ξm+n) is the
non-negative slack variables to account for the misclassified ex-
amples, D is a diagonal matrix with its non-zero entries are
given by, Dii = yi and c is a positive scalar weighting factor
for examples.

Solving the minimization problem in (2) the optimum val-
ues for w and b is obtained. Finally, for an unseen example, x,
the decision function is given by,

f(x) = sign(wTx− b) (3)

where,

x ∈ +1, if f(x) > 0

x ∈ −1, if f(x) < 0

2.2. Proximal Support Vector Machines

Mangasarian and Fung [12] introduced a fundamental change
in the formulation given in (2) by replacing the inequality con-
straint with an equality as follows:

min
w,b,ξ

c

2
ξT ξ +

1

2
(wTw + b2)

subject to : D(Aw − eb) = e− ξ (4)

This formulation is equally good as the classical formula-
tion with some added advantages such as strong convexity of the
objective function [13]. Fig. 1 contrasts the difference between
the classical SVM and PSVM. It may be seen that, in the case
of classical SVM the bounding hyperplanes are passing through
the support vectors while it passes through the data centroids of
the corresponding classes for PSVM.

Figure 1: a) Classical SVM : The bounding hyperplanes are
passing through the support vectors, b) PSVM : The bounding
hyperplanes are passing through the data centroids of the cor-
responding classes

The Lagrangian function for this problem may be obtained
as [13]:

L(w, b, ξ, u) =
c

2
ξT ξ+

1

2
(wTw+b2)−uT (D(Aw−eb)+ξ−e)

(5)
The KKT optimality conditions for the optimization prob-

lem is obtained by setting the derivatives of the above La-
grangian function with respect to (w, b, ξ, u) to zero and sub-
stituting the expressions for w, b, ξ in to the constraint equation
given in (4), we have,

D(AATDu+ eeTDu) +
u

c
= e

∴ u = (
I

c
+D(AAT + eeT )D)−1e (6)
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Figure 2: Block diagram describing the PSVM model training with custom c values for each training example.

Having u from (6), the optimum values of w and b may be
obtained and for an unseen data point, x, the decision can be
found using (3).

2.3. PSVM with custom c

In the original PSVM formulation by Mangasarian, et al. [12],
examples belonging to the target and non-target classes are
treated with equal importance by setting the same c for all train-
ing examples. In [14], it is reported that, treating every data
point equally in the training process may cause unsuitable over-
fitting in SVMs.

In this work, we reformulate the PSVM training to provide
a means to vary the value of c independently for the positive
and negative classes. We are replacing the parameter c in (4)
by C, where, C is the diagonal matrix with its first m diagonal
entries are the weights corresponding to the examples of target
class, c1, and the next n diagonal entries are the weights cor-
responding to the non-target class examples, c2, we obtain the
new objective function and the constraints as:

min
w,b,ξ

1

2
ξTCξ +

1

2
(wTw + b2) (7)

subject to : D(Aw − eb) = e− ξ

The Lagrangian function for this problem may be obtained
as:

L(w, b, ξ, u) =
1

2
ξTCξ+

1

2
(wTw+b2)−uT (D(Aw−eb)+ξ−e)

(8)
The KKT optimality conditions for the expression in (7)

is obtained by setting the derivatives of the above Lagrangian
function with respect to (w, b, ξ, u) to zero, we have:

∂L

∂w
= 0⇒ w = ATDu

∂L

∂b
= 0⇒ b = −eTDu (9)

∂L

∂ξ
= 0⇒ ξ = C−1u

Substituting the expressions for w, b, ξ in (9) to the constraint
equation given in (7), we have,

D(AATDu+ eeTDu) +C−1u = e

∴ u = (C−1 +D(AAT + eeT )D)−1e (10)

Having u from (10), the optimum values of w and bmay be
obtained from (9). Therefore, for an unseen data point, x, the
classification decision is obtained by (3).

Initially, the optimum model parameters are obtained by
empirically calibrating the values of c1 and c2 for target and
non-target classes. The best values of c for each training exam-
ple is then estimated algorithmically. The algorithmic estima-
tion of c is described in what follows:

2.3.1. Estimating the example based weights

In Fig. 2, the process of PSVM model training with custom c
values for each training example is described. The single speech
utterance available for training the speaker model [15] is first
subjected to utterance partitioning with acoustic vector resam-
pling (UP-AVR) [6] to generate four sub-utterances. i-vectors
extracted from the sub-utterances are then used for training a
Gaussian mixture model (GMM) with a single Gaussian and the
mean vector extracted from the GMM is further used as a refer-
ence i-vector. Subsequently the cosine distance score (CDS) [4]
of the reference i-vector with each of the target and non-target
class i-vectors are calculated. The CDS values of each of the i-
vectors are then used for obtaining the weighting factor for each
of the examples as:

c1,j = α

„
1− < ivecref , ivecj >

‖ ivecref ‖‖ ivecj ‖

«
(11)

c2,j = β

„
1− < ivecref , ivecj >

‖ ivecref ‖‖ ivecj ‖

«
(12)

where, c1,j and c2,j corresponds to the c values of ivecj ,
jth i-vector in the target and non-target classes respectively with
respect to the reference i-vector ivecref of the target class. The
value of α and β were selected empirically to compensate for
the data imbalance problem, and the best values are reported in
Section 5.

It may be noted that the examples far away from the tar-
get class will have a higher weighting factor compared to an
example closer to the target class. Therefore the centroid of tar-
get class is not modified significantly while the centroid of the
non-target class is pushed away from the centroid of the target
class and hence the discrimination between the two classes is
improved.

3. System Description
In this work, we developed speaker recognition systems with
the state-of-the-art i-vector with cosine distance scoring (i-
CDS), i-vectors as inputs to a backend support vector machine
(i-SVM) and proximal support vector machine classifiers (i-
PSVM), cosine distance features (CDF) with a backend SVM
and PSVM classifiers (CDF-SVM and CDF-PSVM). A brief
description of i-CDS, i-SVM, i-PSVM, CDF-SVM and CDF-
PSVM systems is briefly explained in what follows:
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Table 1: The specifications of Amrita SRE Database [2]
English Hindi Kannada Malayalam Tamil Telugu Total

Target Speakers 12 17 20 22 14 30 115
Impersonators 20 25 5 7 11 8 76
Target Models 104 141 132 128 117 193 815
Target Trials 1285 996 1004 1167 1000 1542 6994

Non-target Trials 1066 735 355 413 350 1057 3976

3.1. i-CDS

Cosine distance scoring [4] is the most popular and widely used
scoring paradigm in the i-vector framework for its computa-
tional efficiency. In this approach, the decision score is calcu-
lated as the cosine distance between the target i-vector and the
test i-vector [4]. The CDS may be obtained by,

score(ivectar, ivectest) =
< ivectar, ivectest >

‖ ivectar ‖‖ ivectest ‖
(13)

where target speaker i-vector and test speaker i-vector are
denoted by ivectar and ivectest respectively. It may be noted
that, i-CDS does not require a target model training as in SVM
systems.

3.2. i-SVM and i-PSVM

In i-SVM and i-PSVM systems, i-vectors are given as inputs
to a backend SVM or PSVM classifiers [5, 14]. According to
the NIST speaker recognition evaluation (SRE) criteria [15],
for each training model a single speech utterance is available.
Therefore, the number of target class examples are much fewer
than the non-target class examples during the model training
and thereby a significant degradation in the performance [6] of
the i-SVM/i-PSVM is observed when compared to i-CDS. This
data imbalance problem is tackled by using utterance partition-
ing with acoustic vector resampling (UP-AVR) [6] algorithm in
which the single training utterance is split into sub-utterances
prior to the i-vector extraction. In this work, four sub-utterances
are generated from each of the training utterances by repeating
the frame index resampling and utterance partitioning. Further
the i-vectors corresponding to the sub-utterances as target ex-
amples and that of the background utterances as non-target ex-
amples are used for training the SVM or PSVM models. The
decision score is generated by comparing the test i-vectors with
the SVM models. It was seen that i-PSVM outperforms all other
state-of-the-art speaker verification systems when tested using
the mimicked speech database, Amrita SRE Database.

However, it may be noted that in SVM and PSVM, the
training data belonging to both target and non-target classes
are given equal importance by setting a constant scalar, c, as
a weighting factor for the slack variable, ξ. In this work, we
reformulate the PSVM as described in 2.3, by varying the value
of c independently for the target and non-target training exam-
ples to further enhance the robustness of i-PSVM system when
tested with mimicked speech. It is observed from the experi-
mental results that, using the custom c values during the PSVM
training significantly improves the robustness of i-PSVM when
mimicked voices of the target speakers are used as non-target
trials.

3.3. CDF-SVM and CDF-PSVM

In this approach, cosine distance similarities of an i-vector with
a set of predefined reference i-vectors are used as features, co-

sine distance features (CDF) [7], to a backend SVM or PSVM
classifier (CDF-SVM or CDF-PSVM). UP-AVR is applied only
on the training utterances and hence the background and test
speakers are represented by single i-vectors.

The jth element of the CDF vector for the i-vector ivecin
is calculated as:

CDF (j) =
< ivecin, iveccb(j) >

‖ ivecin ‖‖ iveccb(j) ‖
(14)

where, iveccb(j) denotes the jth reference speaker’s i-
vector in the codebook.

Further, normalization of CDF vector is performed and M
largest non-zero values are retained in every CDF vectors while
the remaining N −M smallest elements are truncated to zero.
where, the total number of reference i-vectors is denoted by N .
The final CDF vector obtained is sparse since M � N .

The final decision score is obtained by comparing the CDF
vector corresponding to the test utterance with that of the trained
SVM or PSVM model.

4. Amrita SRE Database
Enhancing the robustness of speaker verification systems when
tested against mimicked speech of target speakers as non-target
trials is extremely important for its use in critical applications.
However, speech mimicry test environments are less explored
due to the nonavailability of a standard speaker recognition
database with mimicked speech utterances of the target speak-
ers.

Amrita SRE Database [2], consists of speech data collected
from 115 target speakers and 76 impersonators mimicking the
voices of the target speakers. The target speakers and imperson-
ators speak in any of the six different languages: English, Hindi,
Malayalam, Kannada, Tamil and Telugu. The specifications of
the database is provided in Table 1. In order to ensure that the
database meets the existing standards, we made the evaluation
criteria same as that of the NIST speaker recognition evalua-
tions (SRE) [15]. A total of 815 target models with 6994 target
and 3976 non-target trials are available during the evaluation.
The training and test utterances are of an average 5 minutes and
30 seconds durations respectively. Apart from the training and
test data, a total number of 2577 speech utterances of 5 minutes
duration were also collected as part of this database to be used
as the development data. The development data does not con-
tain any speech utterances collected from the speakers involved
in the training or testing. All the speech utterances of Amrita
SRE Database are saved in single channel 16-bit PCM format
at a sampling frequency of 8000 Hz.

5. Experiments and Results
All experiments in this work were performed using the Am-
rita SRE database. A spectral matching based voice activity
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Table 2: The performances of i-CDS, i-SVM, i-PSVM, CDF-
SVM and CDF-PSVM systems developed using MFCC are
compared when tested with mimicked speech.

System Kernel EER
i-CDS - 21.99

CDF-SVM

Linear 21.93
Polynomial 31.82

RBF 33.63
Sigmoid 34.43

Intersection 21.5

i-SVM

Linear 20.45
Polynomial 21.06

RBF 22.5
Sigmoid 22.27

Intersection 20.92

i-PSVM

Linear 21.36
Polynomial 32.54

RBF 18.81
Sigmoid 36.86

Intersection 21.96

CDF-PSVM

Linear 20.87
Polynomial 34.26

RBF 35.12
Sigmoid 23.2

Intersection 20.67

detection (VAD) [16] algorithm was used for removing the si-
lence segments from the speech data. The popular short term
cepstral feature, Mel frequency cepstral coefficients (MFCC)
is used for developing the i-CDS, i-SVM, i-PSVM, CDF-SVM
and CDF-PSVM speaker recognition systems [7, 17]. For ex-
tracting MFCC features, a 19 dimensional mel cepstral coef-
ficients together with log energy were computed. The delta
and acceleration coefficients were then appended to make the
final feature vector dimension 60. Universal background model
(UBM) [4] is a Gaussian mixture model (GMM), comprising
512 multivariate Gaussian components, trained using the devel-
opment dataset. 400 and 200 respectively are the ranks of the
total variability and LDA matrices. Training of the total vari-
ability matrix, linear discriminant analysis (LDA), and within
class covariance normalization (WCCN) were performed using
the development dataset [4]. Subsequently, i-CDS, i-SVM, i-
PSVM, CDF-SVM and CDF-PSVM systems were trained us-
ing the i-vectors derived from the development and the training
datasets.

A codebook consisting of 2577 reference speaker models
were used for deriving the CDF. The speaker models from the
development dataset only are present in the reference codebook.
We chose a total of 1500 non-zero values, empirically obtained,
in the CDF vector for the best performance, thus making the
CDF vector sparse.

In Table 2, the performances of i-CDS, i-SVM, i-PSVM,
CDF-SVM and CDF-PSVM systems developed using MFCC
are compared when tested with mimicked speech. For the SVM
backend systems, the performance with different kernels: linear,
polynomial, radial basis function (RBF), sigmoid and intersec-
tion are also presented in Table 2. It is observed that the i-PSVM
with an RBF kernel outperforms all other systems. Therefore
the subsequent experiments with PSVM were performed using
RBF kernel.

On comparing the performance of CDF-SVM systems de-
veloped in this work with that in [7, 17], we note that the per-
formance of CDF-SVM deteriorates significantly when tested
with mimicked speech as non-target trials. Our further analysis
on CDF shows that, the CDF values extracted from the target
and impersonators’ are very close to each other and hence a re-
duction in the discriminative capability of the CDF. Therefore,
it is worth exploring on how to improve the discriminative ca-
pability of the CDF to make it robust to mimicked speech. In
[2], we found that impersonators can effectively match the for-
mant frequencies of the target speakers. Therefore, a detailed
study needs to be done on the attributes that could be utilized
effectively to distinguish the mimicked speech from that of the
target speaker. Our initial study using phase, group delay and
instantaneous frequency for spoofing detection is encouraging
to suggest the use of these features to derive CDF to enhance its
robustness against mimicked speech attacks [18].

In Table 3, the performance of different i-PSVM systems
with: 1) equal weights for all examples, 2) class based weights,
3) example based weights and 4) fused i-SVM + i-PSVM with
example based weights are compared. It is seen that the best
performance for i-PSVM with different weights for target and
non-target classes is obtained for c1 = 0.2 and c2 = 1.1 by
manually varying the values of c1 and c2. For i-PSVM with
example based weights, the best performance of 17.06% EER
was achieved for an α = 16 and β = 0.80. It may also be noted
that, i-PSVM with example based weights gives the best overall
performance when compared with all other individual systems.

Finally, we fused the i-PSVM and i-SVM systems and the
results show that the performance of the combined system is
significantly better than all the individual systems and hence
enhancing its robustness when tested with mimicked speech as
non-target trials. We followed a simple fusion technique by
weighting individual scores of the two systems separately and
the optimum fusion weights are calculated empirically. It was
found that the optimum fusion weights for i-SVM and i-PSVM
are 0.01 and 0.99 respectively. However it may also be noted
that, algorithmically calculating the optimum fusion weights us-
ing a set of calibration data can further improve the performance
and it is not explored in this work due to the unavailability of
calibration data.

In Fig. 3, the performance of i-CDS, i-SVM, CDF-SVM,
CDF-PSVM, i-PSVM with equal weights for all examples, i-
PSVM with class based wights, i-PSVM with example based

Table 3: Performance of i-PSVM systems with: 1) equal weights for all examples, 2) class based weights, 3) example based weights
and 4) fused i-SVM + i-PSVM.

System Optimum parameters EER (in %)
i-PSVM with equal weights for all examples C=0.2 18.81

i-PSVM with different weights for target and non-target classes c1=0.2 and c2=1.1 17.35
i-PSVM with example based weighting α=16 and β=0.8 17.06

Fused i-SVM + i-PSVM Fusion weights:
0.01 for i-SVM and 0.99 for i-PSVM 16.55
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weights and the fused i-SVM+i-PSVM with example based
weights are compared.

ALIZE toolkit [19] was used for training the UBM and i-
vector extraction. We used LIBSVM [20] and PSVM [12] for
all our experiments with SVM. The performance of different
systems developed in this work were evaluated using the de-
tection error tradeoff (DET) curves [21]. The equal error rate
(EER) was used for comparing the systems and was calculated
according to the NIST speaker recognition evaluation (SRE) cri-
teria [1, 15, 21].

Figure 3: Performance comparison of i-CDS, i-SVM, CDF-
SVM, CDF-PSVM, i-PSVM with equal weights for all exam-
ples, i-PSVM with class based wights, i-PSVM with exam-
ple based weights and the fused i-SVM+i-PSVM with example
based weights when tested with mimicked voices of the target
speakers as non-target trials.

6. Conclusion
In this work, we investigated the use of proximal support vector
machine backend classifier with i-vectors as inputs (i-PSVM)
for enhancing the robustness of speaker verification systems
when tested with mimicked voices of the target speakers as
non-target trials. From the experimental results on the mimicry
database, Amrita SRE Database, it was seen that i-PSVM sig-
nificantly outperforms the state-of-the-art baseline i-vector with
cosine distance scoring (i-CDS), i-vector with a backend SVM
(i-SVM) and cosine distance features with an SVM backend
classifier (CDF-SVM) systems.

In i-PSVM, proximity to the target and non-target class is
the criteria for decision making while in i-SVM the distance
from the hyperplane is the criteria. It was seen that the i-PSVM
approach is advantageous when tested with mimicked speech as
non-target trials. This highlights that the proximity to the target
speakers is a better criteria for speaker verification. Further we
noted that weighting the target and non-target class examples
helps us further improve the performance of the i-PSVM sys-
tem. We obtained an improvement of absolute 3.10 % in EER
for i-PSVM with optimum weights for the target and non-target

classes when compared to the best baseline system, i-SVM. We
then devised a strategy for estimating weights for each exam-
ples based on its cosine distance similarity to the centroid of tar-
get class. The i-PSVM with example based weighting scheme
achieves an improvement of 4.93%, 3.39%, and 4.44% abso-
lutes in EER when compared to the baseline i-CDS, i-SVM and
CDF-SVM systems respectively. Finally, we fused the i-PSVM
and i-SVM to obtain an additional improvement of 0.51% in
EER, making an overall performance improvement of 3.90%
absolute in EER compared to the best baseline, i-SVM.
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