
Evaluation of an LSTM-RNN System in Different NIST Language Recognition
Frameworks

Ruben Zazo, Alicia Lozano-Diez,
Joaquin Gonzalez-Rodriguez

ATVS-Biometric Recognition Group, Universidad Autonoma de Madrid, Madrid, Spain
{ruben.zazo, alicia.lozano} @uam.es

Abstract
Long Short-Term Memory recurrent neural networks (LSTM
RNNs) provide an outstanding performance in language iden-
tification (LID) due to its ability to model speech sequences.
So far, previously published LSTM RNNs solutions for LID
deal with highly controlled scenarios, balanced datasets and
limited channel variability. In this paper we evaluate an end-
to-end LSTM LID system, comparing it against a classical i-
vector system, on different environments based on data from
Language Recognition Evaluations (LRE) organized by NIST.
In order to analyze the behavior we train and test our system
on a balanced and controlled subset of LRE09, on the develom-
pent data of LRE15 and, finally, on the evaluation set of LRE15.
Our results show that an end-to-end recurrent system clearly
outperforms the reference i-vector system in a controlled en-
vironment, specially when dealing with short utterances. How-
ever, our deep learning approach is more sensitive to unbalanced
datasets, channel variability and, specially, to the mismatch be-
tween development and test datasets.

1. Introduction
Most of the state-of-the-art systems for LID [1, 2] rely on acous-
tic modeling [3, 4]. The basic approach of these systems con-
sists of an i-vector extractor (as in speaker verification) followed
by a classification stage [5, 6]. Recently, new approaches such
as Deep feed forward Neural Networks (DNNs) have shown
to outperform i-vector based approaches when enough data for
training is available (≥20h per language); specially when deal-
ing with short test utterances (≤3s) [7, 8, 9].

Even though the performance shown by DNNs in LID is
remarkable, they rely on stacking several acoustic frames as an
input in order to model time context longer than a frame [7].
However, Long Short-Term Memory (LSTM) recurrent neural
networks (RNNs) have the ability to store information from pre-
vious inputs during long time periods [10, 11, 12]; which makes
them much more suitable to model data sequences in tasks such
as handwriting recognition [13] or speech recognition [14].

Recently, it has been shown that LSTM RNNs provide an
outstanding performance in (LID) [15]. In that paper, the solu-
tion implemented runs over a large machine infrastructure and
include proprietary LSTM RNNs, both provided by Google Inc.
This fact makes its use hardly reproducible or simply inacces-
sible for many research groups. Motivated by those results, we
published an adapted version of this algorithm using an open
source implementation running over a single GPU [16]. In this
work we study and evaluate our LSTM based system in more
challenging conditions including more similar languages (di-
alects), unbalanced data, duration variability and database mis-

hidden	 layer	 k	

N	 =	 #languages	

hidden	 layer	 1	

Observable	 input:	 	
	 	 	 xt	 (e.g.	 MFCC-‐SDC,	 dim.	 P)	

SoGmax	 output:	 	
	 	 	 	 yt	 (probabiliHes)	

L1	 L2	 LN	

1	 P	

Figure 1: DNN network topology. We use one or two hidden
layers replacing each unit with a LSTM memory block with
forget gates and peepholes.

match. In order to perform this comparison we will use data
from the Language Recognition Evaluations (LRE) organized
by the National Institute of Standards and Technologies (NIST)
in 2009 and 2015. Our results show that our LSTM RNN sys-
tem performs significantly better than the reference i-vector sys-
tem when dealing with short utterances and a controlled envi-
ronment, but its performance degrades in severe mismatched
conditions.

2. System Description
2.1. Long Short-Term Memory RNNs

Deep feed forward Neural Networks (DNNs) have proven to
outperform classical approaches in tasks such as speech recog-
nition [14] or language identification [7]. The typical architec-
ture of a fully connected Deep feed forward Neural Network is
shown in Figure 1. Recurrent Neural Networks (RNNs) are a
special type of DNNs where connections between units form a
directed cycle, creating an internal state of the network which
acts as a memory. It allows RNNs to exhibit dynamic tempo-
ral behavior making them a better approach to model temporal
sequences but, as shown in [17], its training process has some
issues that makes its performance not as good as expected.

The underlying idea of a LSTM neural network is to re-

Odyssey 2016, June 21-24, 2016, Bilbao, Spain

231

in
pu

t

g cell h

it

ft

ct

ot

ou
tp

ut

xt rt

rt−1

yt

LSTM memory blocks

Figure 2: Long Short-Term Memory recurrent neural network
architecture. A single memory block is shown for clarity.

place the hidden units in a traditional RNN with memory blocks.
These memory blocks store the temporal state of the network
which changes with the input of the network at each time step.
As it can be seen in Figure 2, a memory block contains a mem-
ory cell and three adaptive, multiplicative units called gates,
which control the flow of information. The input (it) and output
(ot) gates control respectively the flow of input activations into
the memory cell and the output flow of cell activations into the
rest of the network. The forget gate (ft) allows the flow of infor-
mation from the memory block to the cell as an additive input,
therefore adaptively forgetting or resetting the cell’s memory.
The input, output and forget gates are respectively similar to the
write, read and reset signals in a memory. These features make
them easier to train properly than conventional RNNs. The in-
put and output gates help solving the vanishing error problem
in the traditional RNN[17]: in the absence of a new input or
error signals to the cell, the local error remains constant. The
forget gate allows the network to have an adaptive and limited
memory buffer avoiding infinite loops.

The LSTM architecture described in [12] also has the abil-
ity to learn precise timing of the outputs using peephole con-
nections (dashed arrows in Fig. 2). These connections allow
communication between gates of the same memory block; out-
performing the traditional architecture specially when precise
timing of the outputs is important.

With this architecture, LSTM RNNs compute a mapping
from an input sequence x = (x1, ..., xT) to an output sequence
y = (y1, ..., yT). For LID the input sequence, xi, are the pa-
rameters (e.g. MFCC) of the frame i while the output sequence,
yi, is a vector with as many elements as target languages we
have; every element in the output vector stands for the probabil-
ity of that frame belonging to each language. More information
about the training process of a LSTM can be found in [10, 12].

2.2. System description

In all our experiments the training dataset is split into random
chunks of 2 seconds from which MFCC-SDC (Shifted Delta
Coefficients) with the configuration 7-1-3-7 are computed using
Kaldi [18]. The network is fed with these MFCC-SDC with no
stacking of acoustic frames: a single MFCC-SDC is given as an
input at each time step.

Our system consists of one or two hidden layers followed
by an output layer and are implemented using CURRENNT
[19] running over a single-GPU. The hidden layers are uni-
directional LSTM layers with forget gates and peepholes while
the output layer is a softmax layer with the same number of units

as languages we have in our experiments. The softmax layer uti-
lizes a cross entropy error function for the back propagation and
returns a probability for each input frame and language.

In order to deal with unbalanced data and make the training
process faster we train each iteration with a different subset of
the training data, which consists of picking random chunks of 2
seconds until we have about 6 hours of audio per language.

The memory blocks in the LSTM hidden layers store the
temporal state of the network which changes with the input to
the neural network at each time step. When the system gives
a probability for a given frame of belonging to one of the lan-
guages as an output, it relies not only on the frame input but
on every previous frame in that sequence or file. Therefore, the
last outputs are computed when the system has information of
almost the whole file so they are the most reliable. For scoring,
we compute an utterance level score for each target language
by averaging the log of the softmax output for that language
but taking into account just the last frame scores for every file
(details are given in Section 5).

Finally, multiclass linear logistic regression calibration us-
ing FoCal Multiclass toolkit [20] was applied to the outputs of
every neural network and the reference i-vector system. More-
over, to analyze whether the information learned by the refer-
ence and proposed systems is complementary, linear logistic re-
gression fusion of the two individual systems described (LSTM
and i-vector) was performed and evaluated.

3. Reference System
3.1. i-vector based LID System

The i-vector system follows the standard procedure described
in [21]. It is based on an Universal Background Model con-
sisting of 1024 Gaussian components, trained on the same data
described in section 2: MFCC-SDC with the configuration 7-1-
3-7. From Baum-Welch statistics computed over this UBM, we
derive a Total Variability (TV) subspace of 400 dimensions us-
ing PCA followed by 10 EM iterations. Both MFCC-SDC and
TV matrix were obtained using Kaldi [18].

Having at maximum 8 different classes in our experiments,
a standard classification scheme based on Linear Discriminant
Analysis (LDA) would have projected our data into a space
with 7 or less dimensions, loosing relevant information for LID.
Therefore Cosine Distance scoring without LDA has been used
for this task. Thus, the similarity measure (score) for a given
test utterance i-vector w, and the mean i-vector wL of the lan-
guage L is given by

S(w,wL) =
〈w,wL〉
||w||||wL||

(1)

The total number of parameters of the i-vector system ac-
counts for the TV matrix. It is given by NxFxD, being N , F
and D the number of Gaussians components (1024), the fea-
ture dimension (56) and the i-vector dimensions (400). In our
model, this makes a total of ∼23M of parameters.

4. Datasets and Evaluation Metrics
4.1. Dataset Description

In [16] we already showed the performance of the proposed sys-
tem in a controlled environment. In this paper we aim to eval-
uate the performance of our system on different scenarios. In
order to train, develop and test the systems we have used a sub-
set of NIST LRE 2009 and NIST LRE 2015.

232

Cluster Target Languages
Arabic Egyptian, Iraqi, Levantine, Maghrebi, Modern

Standard
Chinese Cantonese, Mandarin, Min, Wu
English British, General American, Indian
French West African, Haitian Creole
Slavic Polish, Russian
Iberian Caribbean Spanish, European Spanish, Latin

American Spanish, Brazilian Portuguese

Table 1: Target languages and language clusters in NIST LRE
2015.

4.1.1. A balanced subset of NIST Language Recognition Eval-
uation 2009

The first dataset chosen for our experiments is the same used in
[16]: a controlled environment extracted from NIST LRE 2009
[22]. The dataset of the evaluation consisted of a mixture of
two types of data: Conversational Telephone Speech (CTS) and
Broadcast news data from “Voice of America” (VOA). In order
to avoid unbalanced mix of CTS and VOA, all the data consid-
ered in our experiments belongs to VOA. Further, to avoid the
disparity on training material for every language (from ∼10 to
∼950 hours) we selected 8 representative languages for which
up to 200 hours of audio are available: US English (eng), Span-
ish (spa), Dari (dar), French (fre), Pashto (pas), Russian (rus),
Urdu (urd), Chinese Mandarin (chi).

For the test set, we deal only with short utterances (≤3s),
motivated by the degradation on performance seen on i-vector
systems for short durations. Thus, we selected the trials from
the NIST LRE 2009 3s condition belonging to VOA for the
specified languages, yielding a total of 2942 test segments and
23536 trials.

4.1.2. NIST Language Recognition Evaluation 2015

The dataset used for the second set of experiments is the one
provided by NIST for the core task (limited training data) of the
LRE’15 [23]. This dataset includes CTS and Broadcast Narrow
Band Speech (BNBS) within the training data, and 20 different
languages grouped according to 6 clusters (see Table 1), with
no inter-cluster trials. The total amount of hours available for
training and development per language ranges from about half
an hour to more than 100 hours. For more information, see [23].

Differently from the other dataset used in this work, the
emphasis of these experiments is on discriminating among lan-
guages that are similar to each other and frequently mutually
intelligible. Moreover, some clusters are composed of a set of
languages with completely different amount of data available to
train the system, which makes the task more challenging, since
it requires dealing with unbalanced clusters.

In order to evaluate the performance of the system in this
challenging task, two subsets have been selected as evaluation
sets. The first subset mimics the experiments done in the evalua-
tion time, when only the development data was available. Thus,
this evaluation set is a 15% of the development data, which was
not used to train the system. This subset was split in segments
of 3, 10 and 30 seconds to evaluate the performance in differ-
ent durations. The second subset is the real evaluation test-set,
which was not limited to segments of given durations but cov-
ered a broad range of speech durations.

4.2. Evaluation Metrics

Two different metrics were used:

• Cavg , as described in the LRE 2009 [22][24] evaluation
plan, has been used as the main error measure to evalu-
ate the capabilities of the system to identify languages in
a one-vs-all way. Cavg is a cost function that penalizes
taking bad decisions, therefore it considers both discrim-
ination and the ability of setting optimal thresholds (i.e.
calibration).

• EERavg , the mean of the Equal Error Rate computed
language by language has been used for easier compari-
son being an extensively used metric in the community.

5. Experimental Results
5.1. Experiments in a controlled environment: a subset of
NIST LRE 2009

5.1.1. Discarding initial frame scores

In uni-directional, left-to-right LSTMs, such as the one used in
our experiments, an output is based on previous and present in-
puts in the sequence. Therefore, the last output scores are the
most reliable. Figure 3 shows how the average performance
of 5 different architectures varies with the percentage of ini-
tial frame scores discarded (we will describe the different archi-
tectures later in this section, just relative improvement matters
now). Selecting the last 10% of the scores leads to improved
robustness of the utterance level score; from now on, the re-
sults will be shown when 90% of the initial frame scores are
discarded.

5.1.2. System performance

Table 2 summarizes the results obtained in terms of EERavg

and Cavg . We highlight that 4 out of 5 proposed architectures
for the LSTM RNN system outperform the reference i-vector
based system up to 15% in terms of Cavg . This fact is partic-
ularly interesting taking into account that the proposed archi-
tectures have from 5 to 21 times fewer parameters (see Size in
Table 2) than the reference system.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15.5

16

16.5

17

17.5

18

Performance (EER) versus percentage of frame scores discarded

Percentage of frame scores discarded

E
E

R
 (

%
)

Figure 3: In RNN based systems, the output score is computed
based on previous and present inputs, being the last outputs the
most reliable scores. Discarding the less reliable scores may
lead to a better performance. In this figure we show the average
performance (EERavg) of 5 LSTM systems versus percentage
of initial frame scores discarded.

233

Complexity Performance (3s)

ID Size Size Gain (%) EERavg(%) Cavg Improvement (%)
#1 reference i-vector based system ∼23M - 16.94 0.1632 -
#2 lstm 1 layer 512 units ∼1.2M ∼ 94.3 18.05 0.1817 -
#3 lstm 1 layer 750 units ∼2.5M ∼ 88.1 15.83 0.1613 ∼1.2
#4 lstm 1 layer 1024 units ∼4.4M ∼ 79 15.18 0.1559 ∼4.5
#5 lstm 2 layer 256 units ∼850k ∼ 95.9 15.13 0.1585 ∼2.9
#6 lstm 2 layer 512 units ∼3.3M ∼ 84.3 13.66 0.1383 ∼15.3

#7 Fusion (#1 + #6) ∼26M - 11.98 0.1153 ∼29.4

Table 2: Systems performance and size on LRE’09 subset (3s test segments). The third column stands for the relative gain in terms of
size of the proposed systems with respect to the reference system while the last column stands for the relative improvement in terms of
Cavg .

260

6

19

27

17

16

12

19

10

307

29

17

10

12

12

5

7

3

150

11

31

0

3

3

10

16

28

260

8

8

8

7

3

4

61

6

223

3

25

1

9

16

17

20

28

196

5

5

24

13

43

12

42

8

250

4

54

20

41

42

36

13

32

355

Confusion Matrix

Eng Spa Dar Fre Pas Rus Urd Chi

Eng

Spa

Dar

Fre

Pas

Rus

Urd

Chi

Figure 4: Confusion matrix of the best LSTM RNN system,
lstm 2 layer 512 units (system #6), on a balanced subset of
NIST LRE 2009

In order to analyze both the confusion and the discrimina-
tion performance of the systems considering all the languages
pairs, Figure 4 shows the confusion matrix of the best system,
#6 in Table 2.

In addition, we study the complementarity between our
neural network systems and the classical i-vector approach. In
the last row of Table 2 we can see the result of the fusion be-
tween the best LSTM RNN system (#6) and the i-vector system
(#1) which performs roughly 15% better then the best single
system in terms of Cavg .

5.2. Experiments in the development set of NIST LRE 2015

The system proposed in our experiments using NIST LRE 2015
consists of one neural network per cluster. All the neural net-
works have the same architecture which corresponds to the best
performing system in NIST LRE 2009: two hidden layers of
512 units followed by an output layer. The hidden layers are
uni-directional LSTM layers while the output layer is a softmax
with as many units as languages in the cluster.

In this section we want to analyze the results of the best per-
forming system in a controlled environment when dealing with
a more challenging scenario. In these experiments we have 6
clusters with 2 to 6 similar languages in each and the data avail-
able to train is neither balanced nor controlled at all (details are
given in Section 4). For the following experiments we have
not fine tuned our system because we want to test the perfor-

mance of the best system in the previously controlled environ-
ment when facing a more difficult task; closer languages, two
different sources of data, completely unbalanced datasets, etc.

Table 3 summarizes the results on an unseen 15% of the
development set. Two major messages can be extracted from
these results. First of all, note that the LSTM RNN based sys-
tem performs better than the i-vector system when the test utter-
ances are short enough (most of the 3s utterances and some of
the 10s) while the i-vector approach is solidly better when deal-
ing with long utterances. For example, in the 3 seconds subset,
as we show in Fig. 5, the recurrent neural network approach
have an improvement higher than 20% in terms of Cavg with
respect to the reference system. Secondly, we can observe that
the fusion of the two systems behaves considerably better and is
more robust than any of the single systems, outperforming the
deep learning approach even in short durations and the i-vector
system when facing long ones.

5.3. Experiments in the test set of NIST LRE 2015

The last scenario we wanted to test our system in corresponds to
the fixed-training task of the NIST Language Recognition Eval-
uation 2015. In this experiment we have the same set-up as we
had in the previous one but a big mismatch is observed between

Arabic English French Iberic Slavic Chinese Average
0

0.05

0.1

0.15

0.2

0.25

0.3

C
a
v
g

LSTM

i−vector

Fusion

Figure 5: Performance of the proposed system compared to the
reference i-vector system on our 3 seconds subset of the devel-
opment set of NIST LRE 2015

234

Mean Cavg / EER(%) per cluster

System Arabic English French Iberic Slavic Chinese Average

3 sec
LSTM 0.1379 / 13.28 0.1888 / 11.40 0.0270 / 2.92 0.1711 / 14.40 0.1501 / 15.24 0.1011 / 8.73 0.1293 / 11.00
i-vector 0.1559 / 15.86 0.1391 / 11.47 0.0568 / 6.17 0.1996 / 19.90 0.1971 / 19.84 0.2206 / 19.24 0.1615 / 15.41
Fusion 0.1150 / 11.27 0.1248 / 7.86 0.0286 / 2.25 0.1328 / 10.67 0.1371 / 13.69 0.0975 / 7.83 0.1060 / 8.93

10 sec
LSTM 0.0976 / 9.65 0.1932 / 9.63 0.0304 / 2.12 0.1673 / 11.43 0.1059 / 10.85 0.0906 / 7.44 0.1142 / 8.51
i-vector 0.0750 / 7.63 0.0747 / 4.28 0.0198 / 1.06 0.1449 / 12.26 0.1004 / 10.18 0.1133 / 8.32 0.0880 / 7.29
Fusion 0.0609 / 5.81 0.0461 / 4.44 0.0127 / 1.06 0.1003 / 7.92 0.0717 / 7.12 0.0648 / 3.83 0.0594 / 5.03

30 sec
LSTM 0.0859 / 8.93 0.1876 / 6.79 0.0104 / 1.88 0.1473 / 10.33 0.0868 / 8.68 0.0995 / 7.16 0.1029 / 7.30
i-vector 0.0308 / 3.23 0.0199 / 0.76 0 / 0 0.1278 / 8.60 0.0423 / 4.59 0.0493 / 3.77 0.0450 / 3.49
Fusion 0.0306 / 2.84 0.0387 / 0.28 0 / 0 0.0984 / 5.38 0.0331 / 2.99 0.0460 / 1.92 0.0411 / 2.24

Table 3: Results on the NIST 2015 development dataset (testing on an unseen 15% of the development dataset) in terms of EER and
Cavg .

the development data set and the test set. In these conditions,
we wanted to analyze the impact of this mismatch in the pro-
posed system and compare it with the degradation suffered by
the classical i-vector approach.

Figure 6 summarizes our results. We can observe the per-
formance of the two different systems analyzed in function of
some duration bins ranging from those shorter to 3 seconds to
those longer than 30 seconds. The last four bars in Figure 6
are the result of the two analyzed systems in the evaluation test
set. First of all, we can see that in this scenario the i-vector sys-
tem outperforms the LSTM RNN based system, showing that
our deep learning approach suffers from a bigger degradation in
presence of such a mismatch. Secondly, we can see that even
though the performance of the i-vector system has a similar re-
sult than the LSTM for short utterances, it becomes more ac-
curate when the test utterances become longer while the LSTM
seem not to gain so much accuracy in presence of long utter-
ances due to the big mismatch between training and test data.

Finally, we can also see in Fig. 6 the result of two dif-
ferent fusions of the analyzed systems. The first fusion is the
submitted linear logistic regression fusion learned over training
data. The result of this fusion is not better than the best sys-
tem itself in any of the durations, probably because training a
fusion with data that does not represent the test data led to a
wrong fusion which is not able to extract complementary infor-
mation. In order to prove this hypothesis we have also shown
a post-eval fusion (not valid for the evaluation task) with 2-fold
cross-validation (Fusion CV in Fig. 6), splitting the test-set in
two subsets and training the fusion on one dataset and applied
to the other one and vice-versa, leading to an optimistic fusion.
As the results show, this fusion performs better than the single-
systems in every duration proving that the information learned
by the two individual systems is complementary.

6. Conclusions
In this work, we analyzed an end-to-end Long Short-Term
Memory Recurrent Neural Network based system for LID pro-
posed in [16] in several conditions from NIST Language Recog-
nition Evaluations 2009 and 2015 and compared its perfor-
mance with respect to a classical i-vector system.

Results show that the proposed system using significantly
fewer parameters (∼1-5M vs ∼23M) clearly outperforms the
reference system on a controlled environment with balanced
datasets, limited channel variability and no big mismatch be-
tween development and test, specially when dealing with short
utterances.

3 5 10 15 20 25 30 All
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

C
a
v
g

Durations (in seconds)

LSTM

i−vector

Fusion

Fusion CV

Figure 6: Results of our proposed LSTM RNN system and the
reference i-vector system on NIST LRE 15 fixed-training task
divided by duration bins, followed by the overall results.

Furthermore, when facing a more challenging scenario with
highly-unbalanced datasets and closer languages the perfor-
mance of the neural network system gets closer to the classical
i-vector approach, being still better on short utterances while
the i-vector is more accurate on longer ones. Moreover, the in-
formation learned by LSTM RNN systems in this scenario is
complementary to the information learned by the i-vector sys-
tem, being the fusion of both systems solidly better in all the
durations.

Finally, we have tested our system on the real test of NIST
LRE 2015, which has all the variability previously mentioned
but it also adds a mismatch between the training data and the
test data. Our work shows that the deep learning approaches
are more sensitive than the i-vector based systems to this severe
mismatch and cannot surpass its performance.

Our findings in this work show that a deep learning end-to-
end approach for language recognition with∼85% less parame-
ters than a classical i-vector system can achieve robust and com-
parable results in several challenging scenarios. Nevertheless,
this kind of systems strongly depend on the similarity between
the development and the test dataset and seem to need further
research on variability compensation.

235

7. Acknowledgements
This work has been supported by project CMC-V2: Carac-
terizacion, Modelado y Compensacion de Variabilidad en la
Senal de Voz (TEC2012-37585-C02-01), funded by Ministerio
de Economia y Competitividad, Spain.

8. References
[1] Y.K. Muthusamy, E. Barnard, and R.A. Cole, “Review-

ing automatic language identification,” Signal Processing
Magazine, IEEE, vol. 11, no. 4, pp. 33–41, 1994.

[2] E. Ambikairajah, Haizhou Li, Liang Wang, Bo Yin, and
V. Sethu, “Language identification: A tutorial,” Circuits
and Systems Magazine, IEEE, vol. 11, no. 2, pp. 82–108,
2011.

[3] Pedro A. Torres-Carrasquillo, Elliot Singer, Mary A.
Kohler, and J. R. Deller, “Approaches to Language Iden-
tification Using Gaussian Mixture Models and Shifted
Delta Cepstral Features,” in ICSLP, 2002, vol. 1, pp. 89–
92.

[4] J. Gonzalez-Dominguez, I. Lopez-Moreno, J. Franco-
Pedroso, D. Ramos, D.T. Toledano, and J. Gonzalez-
Rodriguez, “Multilevel and Session Variability Com-
pensated Language Recognition: ATVS-UAM Systems at
NIST LRE 2009,” IEEE Journal of Selected Topics in Sig-
nal Processing, vol. 4, no. 6, pp. 1084–1093, 2010.

[5] D. Martinez, O. Plchot, L. Burget, Ondrej Glembek,
and Pavel Matejka, “Language Recognition in iVectors
Space.,” in INTERSPEECH, 2011, pp. 861–864.

[6] Elliot Singer, Pedro Torres-Carrasquillo, Douglas A
Reynolds, Alan McCree, Fred Richardson, Najim Dehak,
and Doug Sturim, “The mitll nist lre 2011 language recog-
nition system,” in Odyssey - The Speaker and Language
Recognition Workshop, 2012.

[7] Ignacio Lopez-Moreno, Javier Gonzalez-Dominguez,
Oldrich Plchot, David Martinez, Joaquin Gonzalez-
Rodriguez, and Pedro Moreno, “Automatic Language
Identification using Deep Neural Networks,” in Acous-
tics, Speech and Signal Processing (ICASSP), 2014 IEEE
International Conference on. IEEE, 2014, pp. 5337–5341.

[8] Alicia Lozano-Diez, Javier Gonzalez-Dominguez, Ruben
Zazo, Daniel Ramos, and Joaquin Gonzalez-Rodriguez,
“On the use of convolutional neural networks in pairwise
language recognition,” in Advances in Speech and Lan-
guage Technologies for Iberian Languages, pp. 79–88.
Springer, 2014.

[9] Alicia Lozano-Diez, Ruben Zazo-Candil, Javier
Gonzalez-Dominguez, Doroteo T Toledano, and Joaquin
Gonzalez-Rodriguez, “An end-to-end approach to
language identification in short utterances using con-
volutional neural networks,” in InterSpeech 2015,
2015.

[10] Alex Graves, Supervised Sequence Labelling with Recur-
rent Neural Networks, vol. 385, Springer, 2012.

[11] Felix A. Gers, Jrgen Schmidhuber, and Fred Cummins,
“Learning to forget: Continual prediction with LSTM,”
Neural Computation, vol. 12, no. 10, pp. 2451–2471,
2000.

[12] Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmid-
huber, “Learning precise timing with LSTM recurrent net-
works,” Journal of Machine Learning Research, vol. 3,
pp. 115–143, Mar. 2003.

[13] Volkmar Frinken, Francisco Zamora-Martinez, Salvador
Espana-Boquera, Marıa José Castro-Bleda, Andreas Fis-
cher, and Horst Bunke, “Long-short term memory neu-
ral networks language modeling for handwriting recogni-
tion,” in Pattern Recognition (ICPR), 2012 21st Interna-
tional Conference on. IEEE, 2012, pp. 701–704.

[14] Alex Graves, Navdeep Jaitly, and A-R Mohamed, “Hybrid
speech recognition with deep bidirectional LSTM,” in Au-
tomatic Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop on. IEEE, 2013, pp. 273–278.

[15] Javier Gonzalez-Dominguez, Ignacio Lopez-Moreno,
Hasim Sak, Joaquin Gonzalez-Rodriguez, and Pedro J.
Moreno, “Automatic language identification using long
short-term memory recurrent neural networks,” in IN-
TERSPEECH 2014, 15th Annual Conference of the Inter-
national Speech Communication Association, Singapore,
September 14-18, 2014, 2014, pp. 2155–2159.

[16] R Zazo, A Lozano-Diez, J Gonzalez-Dominguez,
D T Toledano, and J Gonzalez-Rodriguez, “Language
Identification in Short Utterances Using Long Short-Term
Memory (LSTM) Recurrent Neural Networks.,” PloS one,
vol. 11, no. 1, 2015.

[17] Yoshua Bengio, Nicolas Boulanger-Lewandowski, and
Razvan Pascanu, “Advances in optimizing recurrent net-
works,” in Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2013, pp. 8624–8628.

[18] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Hanne-
mann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The kaldi
speech recognition toolkit,” in IEEE Workshop on Au-
tomatic Speech Recognition and Understanding. 2011,
IEEE Signal Processing Society.

[19] Felix Weninger, Johannes Bergmann, and Bjorn Schuller,
“Introducing currennt: the munich open-source cuda re-
current neural network toolkit,” Journal of Machine
Learning Research, vol. 15, 2014.

[20] Niko Brümmer, “Focal multi-class: Toolkit for evaluation,
fusion and calibration of multi-class recognition scorestu-
torial and user manual,” Software available at http://sites.
google. com/site/nikobrummer/focalmulticlass, 2007.

[21] N. Dehak, P. A. Torres-Carrasquillo, D. A. Reynolds, and
Reda Dehak, “Language Recognition via i-vectors and Di-
mensionality Reduction.,” in INTERSPEECH. 2011, pp.
857–860, ISCA.

[22] NIST, “The 2009 NIST SLR Evalua-
tion Plan,” www.itl.nist.gov/iad/mig/tests/lre/
2009/LRE09 EvalPlan v6.pdf, 2009.

[23] “2015 Language Recognition Evaluation,” Available
from: http://www.nist.gov/itl/iad/mig/lre15.cfm, 2015.

[24] N. Brümmer, Measuring, Refining and Calibrat-
ing Speaker and Language Information Extracted from
Speech, Ph.D. thesis, Department of Electrical and Elec-
tronic Engineering, University of Stellenbosch,, 2010.

236

