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Abstract
By treating utterances as points in the i-vector space, i-
vector/PLDA can achieve fast verification. However, this ap-
proach lacks the ability to cope with utterance-length variabil-
ity. A method called uncertainty propagation (UP) that takes the
uncertainty of i-vectors into account has been recently proposed
to deal with this problem. However, the loading matrix for mod-
eling utterance-length variability is session-dependent, making
UP computationally expensive. In this paper, we demonstrate
that utterance-length variability mainly affects the scale of the
posterior covariance matrices. Based on this observation, we
propose to substitute the session-dependent loading matrices by
the ones trained from development data, where the selection of
pre-computed loading matrices is based on a fast scalar compar-
ison. This approach can reduce the computation cost of standard
UP to the one comparable with the conventional PLDA. Experi-
ments on the NIST 2012 Speaker Recognition Evaluation show
that the proposed method can perform as good as the standard
UP, but requires only 3.7% of the scoring time. The method
also requires substantially less memory as compared with the
standard UP, especially when the number of target speakers is
large.

1. Introduction
The i-vector/PLDA framework [1–3] currently dominates the
text-independent speaker verification domain. The method has
also been extended to address noise variability in robust speaker
verification [4, 5]. Its success relies on the assumption that ut-
terances can be treated as points in the i-vector space irrespec-
tive of their duration. This assumption works well when utter-
ances are sufficiently long. When presented with short utter-
ances or utterances with varying durations, the performance of
i-vector/PLDA systems will degrade rapidly.

In [6, 7], Kenny et al. proposed a sophisticated method
called uncertainty propagation (UP) to deal with utterance-
length variability. The method relies on the fact that an i-vector
is the posterior mean of the latent variables conditioned on the
Baum-Welch statistics and that the posterior covariance matrix
represents the reliability of the i-vector. As a result, the longer
the utterance, the smaller the posterior covariances. The idea
of uncertainty propagation is to model the uncertainty in the es-
timated i-vector by a session-dependent loading matrix in the
PLDA model.

This length-variability loading matrix, unlike speaker load-
ing matrix or channel loading matrix, is session-dependent. As
a result, the session-dependent terms in the PLDA scoring func-
tion cannot be pre-computed, which makes the scoring process
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computationally expensive. Beside computation cost, UP also
requires to store the posterior covariance matrices of enrollment
utterances. As a result, the memory consumption per utter-
ance growths quadratically with the i-vector dimension. Both
computation cost and memory consumption make this method
unattractive in real applications.

Several attempts have been made to speed up the scoring
process of UP. For example, Cumani et al. [8] proposed us-
ing MAP-estimated i-vectors for the target speakers and prop-
agating the posterior covariances of test i-vectors to the PLDA
model. The method works well when the test utterances are
short and the target-speakers’ utterances are long. In [9], the au-
thor proposed diagonalizing the matrices involved in scoring to
reduce the computational complexity. This approach, although
outperforms the conventional PLDA, still degrades performance
of UP when the test utterances are very short.

In this paper, we propose a scoring method based on a factor
analysis model that does not involve session-dependent loading
matrices. To remove the session dependency, we trained multi-
ple length-variability loading matrices from development data.
Then via some simple metrics, length-variability loading ma-
trices are selected to model the length-variability of target and
test i-vectors during the scoring stage. By getting rid of session-
dependent matrices, we can pre-compute the length-variability
related terms and store them in a repository for retrieval during
verification. Thus, the computational complexity of our method
is the same as that of the conventional PLDA.

Experiments on the NIST 2012 SRE [10] show that the pro-
posed method can perform as good as standard UP, provided
that sufficient length-variability matrices are available for se-
lection. The scoring time is only 3.7% of standard UP. The
proposed method is also economical in memory consumption in
that the memory for storing the pre-computed terms does not de-
pend on the number of target speakers, which makes the method
an ideal solution for large-scale speaker verification.

This paper is organized as follows. Section 2 describes the
conventional i-vector/PLDA approach and explains the princi-
ple of uncertainty propagation. Emphases are made on the scor-
ing functions and explanation of why UP is computationally ex-
pensive. In Section 3, we provide the details of the fast scoring
methods. Experimental setup and results are presented in Sec-
tion 4 and Section 5, respectively. Finally, we conclude our
findings in Section 6.

2. I-vector/PLDA and Uncertainty
Propagation

2.1. I-vector Extraction

The i-vector approach is based on the joint factor analysis [11],
[12]. It can be viewed as a feature extraction process that maps
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a sequence of acoustic vectors in an utterance to a vector of low
and fixed dimension. It assumes that the speaker- and channel-
dependent GMM-supervectors [13] (β’s) live in a low dimen-
sional space:

β = m + Tη, (1)

where m is the speaker- and channel-independent GMM-
supervector constructed by stacking up the means of a univer-
sal background model (UBM); T is a low-rank total variability
matrix whose columns span the subspace where speaker- and
channel-specific information varies; η is a latent variable which
is assumed to follow a standard normal distribution. Given an
utterance, its i-vector is the maximum-a-posteriori (MAP) esti-
mate of the latent variable η, which we denote as ω. Consider
an utterance of T acoustic vectors X = {x1, . . . ,xT } and an
UBM of C mixture components: {λc,mc,Σc}Cc=1. To esti-
mate the i-vector of this utterance, we compute the Baum-Welch
statistics as follows [14]:

Nc =
T∑

t=1

γt(c) (2)

f̃ c =
T∑

t=1

γt(c)(xt −mc) (3)

where

γt(c) =
λcN (xt; mc,Σc)∑C
c=1 λcN (xt; mc,Σc)

. (4)

The posterior covariance matrix cov(η,η) and the i-vectorω of
the utterance are given by:

cov(η,η) = L−1 =

(
I +

C∑

c=1

NcT
T
cΣ
−1
c Tc

)−1

(5)

ω = cov(η,η)
C∑

c=1

TT
cΣ
−1
c f̃ c, (6)

where L is the posterior precision matrix.

2.2. Probabilistic Linear Discriminant Analysis

After i-vector extraction, channel compensation is applied to
suppress the undesired variability in the i-vectors. The low di-
mensionality of i-vectors makes it possible to apply statistical
methods that are not practical in the high-dimensional super-
vector space. The most popular method is probabilistic linear
discriminant analysis (PLDA). Early PLDA is based on Stu-
dent’s t distributions because it was found empirically that i-
vectors follow a heavy-tailed distribution [3]. It was found later
that Gaussian PLDA with length-normalized i-vectors performs
equally well [15]. Because of its low computational require-
ments, Gaussian PLDA is preferred in practice.

2.2.1. I-Vector Preprocessing for PLDA

To use Gaussian PLDA, we first need to preprocess the i-
vectors, which involves two steps. First, we need to whiten
i-vectors using the matrix W learned from training set. It can
be written as:

ωwht = WT(ω − ω̄) (7)

where ω̄ is the mean of training i-vectors, ωwht is the whitened
i-vector and W is a transformation matrix. W can be ob-
tained by the Cholesky decomposition of the within-class co-
variance matrix of training i-vectors [16]. Then we apply

length-normalization to i-vectors individually:

ωl-norm =
ωwht

‖ωwht‖ . (8)

It is also customary to apply linear discriminant analysis (LDA)
followed by within-class covariance normalization (WCCN)
[17] to the length-normalized i-vectors. Let us denote a matrix
P as the transformation matrix that combines whitening, LDA
and WCCN, then the whole pre-processing step can be written
as:

w =
P(ω − ω̄)

‖ωwht‖ , (9)

where w is a preprocessed i-vector for Gaussian PLDA model-
ing.

2.2.2. Gaussian PLDA Modelling

In Gaussian PLDA, a preprocessed i-vector wi,j from the j-
th session of speaker i is considered generated from a factor
analysis model:

wi,j = µ+ Vhi + Gzi,j + εi,j , (10)

where µ is the global mean of i-vectors, the column of V de-
fines the speaker subspace where speaker factor hi varies, the
column of G defines the channel subspace where channel fac-
tor zi,j varies, and εi,j is the residual noise that is not cap-
tured by both subspaces. Both hi and zi,j are assumed to fol-
low a standard normal prior. εi,j is assumed to follow a Gaus-
sian distribution with zero mean and diagonal covariance matrix
Σ.1 The model can be divided into two parts: (1) the speaker-
dependent partµ+Vhi describing the inter-speaker variability,
which remains unchanged for the same speaker; (2) the session-
dependent part Gzi,j + εi,j describing the intra-speaker vari-
ability, which varies from utterances to utterances even for ut-
terances from the same speaker.

Because i-vectors are of low dimension, it is feasible to ab-
sorb the intra-speaker variability into the full covariance matrix
Σ, which results in the simplified Gaussian PLDA model:

wi,j = µ+ Vhi + εi,j , (11)

where εi,j ∼ N (0,Σ).

2.2.3. Gaussian PLDA Scoring

Given a test i-vector wt and a target speaker’s i-vector ws, the
log-likelihood ratio of the same-speaker hypothesis to different-
speaker hypothesis can be computed by [15]:

score = log

[
p(ws,wt|same-speaker)

p(ws,wt|different-speakers)

]

=
1

2
wT

sΦws + wT
sΨwt +

1

2
wT

tΦwt + const (12)

where

Φ = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1

Ψ = Σ−1
totΣac(Σtot −ΣacΣ

−1
totΣac)

−1
(13a)

Σac = VVT Σtot = VVT + Σ. (13b)

Note that Eq. 13 can be pre-computed and only Eq. 12 needs to
be evaluated during verification. As a result, PLDA scoring is

1Do not confuse this covariance matrix with Σc’s in Eq. 4.
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very efficient.

2.3. Uncertainty Propagation

Despite the huge success of the i-vector/PLDA framework, its
underlying assumptions limit its applications. First, in i-vector
extraction the duration of utterances is totally ignored, i.e., ut-
terances are represented by vectors of fixed dimension regard-
less of their duration. Recall that an i-vector is the MAP es-
timate of latent variable η; the accuracy of such estimate de-
pends on the number of acoustic vectors. By ignoring dura-
tions, all i-vectors are treated as equally reliable. Secondly, in
PLDA modelling, it is assumed that all of the intra-speaker vari-
abilities are represented by the covariance matrix Σ, which is
the same across all i-vectors. This is apparently not a satis-
factory assumption because short utterances have more severe
intra-speaker variabilities than long utterances. It is undesirable
to model both short and long utterances by the same covariance
matrix (VVT + Σ).

To better accommodate utterance-length variability, a mod-
ified PLDA is proposed in [6]. The basic idea is to tightly couple
i-vector extraction and PLDA modelling by propagating the un-
certainty during i-vector extraction into the PLDA model. Re-
call that the posterior covariance matrix in Eq. 5 represents the
uncertainty of the MAP point-estimate in i-vector extraction.
The shorter the utterance, the larger the posterior covariances.
By propagating this information into PLDA and using a loading
matrix to model the variability due to duration variation, this
PLDA model can better handle the length-variability than the
conventional PLDA model.

2.3.1. I-Vector Preprocessing for PLDA with UP

Because of the i-vector preprocessing steps in Section 2.2.1, we
also need to apply the equivalent steps to the posterior covari-
ance matrix. If only linear transformation P is applied to an
i-vector, we can obtain its transformed posterior covariance ma-
trix by:

cov(Pη,Pη) = PL−1PT. (14)

We denote this covariance matrix as UUT, i.e.,
cov(Pη,Pη) = UUT where U will be propagated to
the PLDA model (see Section 2.3.2) to reflect the uncertainty
of this i-vector. If length-normalization is applied to i-vectors,
we can no longer find an exact preprocessed covariance matrix.
Nevertheless, it can be approximated by [6]:

UUT ← PL−1PT

‖ωwht‖2 . (15)

While it is a crude approximation, we will show later that the
approximation is good enough for UP to achieve very good per-
formance.

2.3.2. Gaussian PLDA Modelling with UP

To propagating i-vectors’ uncertainty into the PLDA model, an
extra session-dependent space U is added to the model to reflect
duration variability:

wi,j = µ+ Vhi + Ui,jzi,j + εi,j , (16)

where Ui,j is the Cholesky decomposition of the posterior co-
variance matrix.2 We refer to the space spanned by the col-

2To simply naming, we refer UUT to as posterior covariance matrix
or covariance matrix in the rest of this paper unless stated otherwise.

umn vectors of U as the length-variability space and zi,j as the
length-variability factor, which is assumed to follow a standard
normal distribution. It should be noted that, unlike the speaker
subspace or the channel subspace, the length-variability space
is session-dependent.

2.3.3. Uncertainty Propagation Scoring

Given a test i-vector wt and a target speaker’s i-vector ws

and their corresponding posterior covariance matrix UtUt
T and

UsUs
T, the log-likelihood ratio of the same-speaker hypothesis

to different-speaker hypothesis can be computed by [18]:

score = log

[
p(ws,wt|UsUs

T,UtUt
T, same-speaker)

p(ws,wt|UsUs
T,UtUt

T, different-speakers)

]

=
1

2

[
wT

sAs,tws + 2wT
sBs,twt + wT

tCs,twt

]
+Ds,t

(17)

where

As,t = Σ−1
s − (Σs −ΣacΣ

−1
t Σac)

−1 (18a)

Bs,t = Σ−1
s Σac(Σt −ΣacΣ

−1
s Σac)

−1 (18b)

Cs,t = Σ−1
t − (Σt −ΣacΣ

−1
s Σac)

−1 (18c)

Ds,t = −1

2
log

∣∣∣∣
Σs Σac

Σac Σt

∣∣∣∣+
1

2
log

∣∣∣∣
Σs 0
0 Σt

∣∣∣∣ (18d)

Σt = VVT + UtU
T
t + Σ (18e)

Σs = VVT + UsU
T
s + Σ (18f)

Σac = VVT (18g)

It is apparent from Eq. 18 that scoring in uncertainty prop-
agation is much more computationally expensive than that in
conventional PLDA, because Eq. 18(a–e) involve terms depen-
dent on the test utterance. Unlike the speaker loading matrix V
and the channel loading matrix G, Ut are session-dependent,
which forbids us to perform pre-computation as in Eq. 12 and
Eq. 13. Besides, it is also necessary to store the loading matrix
Us (or the covariance matrix UsU

T
s), which results in consid-

erable memory consumption. To reduce computation burden
during verification, we need a method that allows us to perform
pre-computation as much as possible while still be able to prop-
agate the i-vector uncertainty to the PLDA model.

3. Fast Scoring for Uncertainty
Propagation

3.1. Similarity in Posterior Covariance Matrices

Eq. 5 suggests that the posterior covariance matrices quantify
the uncertainty of i-vectors through the zero-order sufficient
statistics Nc’s, which in turn are proportional to the utterance
length. Therefore, if two utterances are of approximately the
same duration, the posterior covariance matrices should be very
similar.

To verify this conjecture, we selected 2000 utterances from
development data and equally divided them into two sets: UA

and UB . For each utterance in UA, we truncated it to 1000
speech frames (after VAD). For each utterance in UB we pro-
gressively truncated the speech regions from the end to produce
short utterances comprising 9000 frames down to 1000 frames
at an interval of 1000 frames. As a result, each utterance in
UB produces nine truncated utterances. Then, we compute
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System Group Identity Indicator
Sys. 1 Utterance length (after VAD)
Sys. 2 The mean of the diagonal elements of UUT

Sys. 3 The largest eigenvalue of UUT

Table 1: The group identity indicators used by the 3 systems to
quantify the characteristics of the posterior covariance matrices.

the posterior covariance matrices of the truncated utterances
and denoted them as Γ

(k)
A,i and Γ

(l)
B,i where i = 1, . . . , 1000

k = 1000, and l ∈ {1000, 2000, . . . , 9000}. This procedure
effectively creates utterance pairs with variable utterance-length
differences. For example, the utterance-length difference be-
tween Γ

(1000)
A,i and is Γ

(5000)
B,i is 4000 frames. Finally, we mea-

sured the distance between Γ
(k)
A,i and Γ

(l)
B,i by [19]:

d(Γ
(k)
A,i,Γ

(l)
B,i) =

√√√√√√
trace

{(
Γ

(k)
A,i − Γ

(l)
B,i

)T (
Γ

(k)
A,i − Γ

(l)
B,i

)}

trace
{

Γ
(k)
A,i

T
Γ

(k)
A,i + Γ

(l)
B,i

T
Γ

(l)
B,i

} ,

(19)
where k = 1000, l ∈ {1000, 2000, . . . , 9000}, and i =
1, . . . , 1000.

Fig. 1 shows a box plot of the distance d(·, ·) against the
length-difference between the two utterances. The central mark
inside each box indicates the median distance of 1000 pairs, and
the bottom and top edges of the box indicate the 25th and 75th
percentiles of distances, respectively. The whiskers extend to
the most extreme non-outliers, and the outliers are represented
by the ‘+’ symbol [20].

Evidently, when the two utterances have equal length
(Utterance-Length Difference = 0), the distance between the
two posterior covariance matrices is very small, suggesting that
the two covariance matrices are very similar. On the other hand,
when the length-difference increases, the two matrices become
dissimilar. Fig. 1 suggests that we may use utterance length
to quantify the characteristics of posterior covariance matrices
or session-dependent loading matrices Ui,j . Therefore, for i-
vectors that are estimated from utterances of approximately the
same duration, the length-variabilities of these i-vectors could
be modelled by the same loading matrix despite of the differ-
ences in channel- or speaker-specific information.

3.2. Fast Scoring for PLDA with UP

Motivated by the above observation, we divided the time be-
tween 1 and 42 seconds into a number of equal-length intervals
and grouped the i-vectors into these intervals according to their
utterance duration. As a result, the utterances in each group
span a limited range of durations. For each group, we chose the
U that corresponds to the middle of the interval as the length-
variability loading matrix for that group. Through this proce-
dure, we obtained a number of length-variability loading matri-
ces, which can be used for enrolment as well as scoring the test
i-vectors.

We denote k as the group index of i-vector wi,j and Uk as
the corresponding length-variability loading matrix. The factor
analysis model in Eq. 16 becomes:

w
(k)
i,j = µ+ Vhi + Ukzi,j + εi,j . (20)

Utterance-length Difference (No. of Frames)
0 1000 2000 3000 4000 5000 6000 7000 8000

d
(Γ

i,Γ
j)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1: The distance (Eq. 19) between two covariance ma-
trices with utterance-length difference ranging from 0 to 8000
frames (after VAD).

The major difference between Eq. 20 and Eq. 16 is the sources
of the length-variability matrices U. In Eq.16, Ui,j is the
Cholesky decomposition of the posterior covariance matrix of
i-vector wi,j . On the other hand, Uk in Eq. 20 is the Cholesky
decomposition of the posterior covariance matrix of an i-vector
derived from development data, where the posterior covariance
matrix is very similar to that of wi,j . Because Uk is not ses-
sion dependent, we can pre-compute all of the Uk’s and their
associated terms before verification.

Let us denote ws and wt as the i-vector of a target speaker
and a test utterance, respectively. Suppose that the target
speaker’s i-vector belongs to group m and its corresponding
length-variability matrix is Um, which is selected from a group
of length-variability matrices U = {Uk; k = 1, . . . ,K}. Sim-
ilarly, assume that the test i-vector belongs to group n and its
corresponding length-variability matrix is Un, which is also se-
lected from U . Then, the log-likelihood ratio score in Eq. 17
becomes:

score =
1

2
wT

sAm,nws+wT
sBm,nwt+

1

2
wT

tCm,nwt+Dm,n.

(21)
The terms Am,n,Bm,n,Cm,n and Dm,n are retrieved from a
repository that stores all of the pre-computed Ap,q,Bp,q,Cp,q

and Dp,q , which are:

Ap,q = Σ−1
p − (Σp −ΣacΣ

−1
q Σac)

−1 (22a)

Bp,q = Σ−1
p Σac(Σq −ΣacΣ

−1
p Σac)

−1 (22b)

Cp,q = Σ−1
q − (Σq −ΣacΣ

−1
p Σac)

−1 (22c)

Dp,q = −1

2
log

∣∣∣∣
Σp Σac

Σac Σq

∣∣∣∣+
1

2
log

∣∣∣∣
Σp 0
0 Σq

∣∣∣∣ , (22d)

where
Σp = VVT + UpU

T
p + Σ p = 1, . . . ,K (22e)

Σq = VVT + UqU
T
q + Σ q = 1, . . . ,K (22f)

Σac = VVT. (22g)

The group identities m and n are determined using their du-
ration, as illustrated in Fig. 2. The group identity of ws can
be determined before verification. We only need to determine
the group identity of test i-vector wt and then evaluate Eq. 21
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Method K
Male (CC2)

EER(%) minDCF
Sys. 1 Sys. 2 Sys. 3 Sys. 1 Sys. 2 Sys. 3

PLDA with UP by Fast
Scoring

20 6.21 7.02 6.17 0.640 0.685 0.654
25 6.07 6.35 6.00 0.635 0.658 0.646
30 5.96 6.07 5.93 0.632 0.632 0.648
35 6.45 5.97 5.91 0.633 0.631 0.643
40 5.91 5.93 5.85 0.641 0.641 0.649
45 5.95 5.89 5.96 0.633 0.642 0.636

PLDA - 7.77 0.654
PLDA with UP - 5.75 0.644

Table 2: The performance of PLDA, PLDA with standard UP, and PLDA with UP using the proposed fast scoring methods on the
truncated utterances in CC2 of NIST 2012 SRE. K is the number of matrices U’s in the repository. See Table 1 for the group-identity
indicators used by the three systems.

during verification.

3.3. Other Possible Identity Indicators

The method in Section 3.2 has a problem when length normal-
ization is included in i-vector preprocessing. This is because in
Eq. 15 the posterior covariance matrix is scaled by the i-vector
length. As length normalization is a non-linear function, it is
unclear how the utterance length is related to the covariance
matrix UUT in Eq. 15. Therefore, using durations to determine
length-variability groups may not be appropriate. Therefore,
we propose two other measures that directly compare the trans-
formed covariance matrices in Eq. 15. To this end, we define a
scalar α to quantify the characteristics of the matrix UUT:

α = f(UUT), (23)

where this α could be:

1) The mean of the diagonal elements of UUT. Because the
posterior covariance matrix UUT is almost diagonal, the
mean of the diagonal elements is a compact representation
of it;

2) The largest eigenvalue of UUT. If the largest eigenvalues
of two posterior covariance matrices are close, then the co-
variance matrices represent the same degree of variability;

We divided development i-vectors into a number of groups
such that each group spans a limited range of α. For each group,
we chose the U corresponding to the middle the α-interval as
the length-variability loading matrix of that group. In this way,
we obtained a number of length-variability matrices Uk’s to-
gether with their corresponding αk’s (k = 1, . . . ,K). The
group identities of target speaker’s i-vector ws and test i-vector
wt is then determined by:

m = arg min
k∈{1,...,K}

|αk − α(s)| (24a)

n = arg min
k∈{1,...,K}

|αk − α(t)| (24b)

where α(s) and α(t) are derived from their posterior matrices
UsU

T
s and UtU

T
t using Eq. 23.

4. Experimental Setup
4.1. Speech Data and Performance Metrics

Speech files from NIST 2005–2012 SRE were used for system
development and performance evaluation. The speech regions
of each file were determined by a two-channel voice activity
detector [21]. For each 10ms in the speech regions, we used
a 25-ms Hamming window to extract 19 Mel frequency cep-
stral coefficients (MFCC) and its log-energy plus their first and
second derivatives, which is followed by cepstral mean normal-
ization and feature warping [22]. This procedure results in a
60-dimensional acoustic vector per 10 ms. To simulate utter-
ances with arbitrary duration, the speech regions of each utter-
ance were concatenated and then truncated randomly at a length
ranging from 1 to 42 seconds.

System performance was based on the truncated speech
segments of Common Condition 2 of NIST 2012 SRE (core
set, male speakers). Equal error rate (EER), minimum detec-
tion cost function (minDCF) in NIST 2012 SRE and detection
error rate trade-off (DET) curves [23] were used as performance
metrics.

4.2. I-vector Extraction and PLDA Model Training

A gender-dependent UBM with 1024 Gaussian components and
a total variability matrix with 500 total factors were trained us-
ing the full-length microphone and telephone utterances (after
VAD) from NIST 2005-2008 SREs. Then, 500-dimensional
i-vectors were extracted. WCCN whitening [16] followed
by length-normalization (LN) [15] were applied to reduce the
heavy-tailed behavior of i-vectors. Then LDA was applied to
suppress intra-speaker variability and reduce i-vectors’ dimen-
sion to 200. Another WCCN was then applied to reduce the ef-
fect of high within-class variability in the LDA-projected space.
The parameters of WCCN, LDA, PLDA and PLDA with uncer-
tainty propagation were trained using the truncated telephone
and microphone utterances in NIST 2006–2010 SRE.

In fast scoring, the length-variability loading matrices were
obtained from the truncated telephone utterances in NIST
2006–2010 SRE. Based on the three approaches to quantify-
ing the characteristics of posterior covariance matrices in Sec-
tions 3.2 and 3.3, we have three PLDA-UP systems: Sys. 1,
Sys. 2, and Sys. 3. Table 1 shows the group identity indicators
used by these systems. We varied the values of K in Eq. 24
from 20 to 45.
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Figure 2: Determination of group identities of target speaker’s i-vector and test i-vector based on their utterance duration. In the figure,
K = 20 in Eq. 24.

Method K
Male (CC2)

EER minDCF Time Mem.
PLDA - 7.77 0.654 412.7 0.01

PLDA-UP - 5.75 0.644 14763.9 1.09

Sys. 2

20 7.02 0.685 490.0 0.17
25 6.35 0.658 517.8 0.28
30 6.07 0.632 541.1 0.40
35 5.97 0.631 534.8 0.55
40 5.93 0.641 545.0 0.72
45 5.89 0.642 536.1 0.90

Table 3: EER, minDCF, scoring time (in seconds) and memory
consumption (in gigabytes) of PLDA, PLDA with standard UP,
and PLDA-UP with fast scoring (Sys. 2).

5. Results and Analysis
5.1. Performance of Fast Scoring Systems

Table 2 shows the EER and the minDCF achieved by conven-
tional PLDA, PLDA with UP, and the three fast scoring systems.
Fig. 3 shows the DET curves of the fast scoring systems with the
number of length-variability loading matrices varies from 20 to
45. Three observations can be made from Table 2 and Fig. 3:

1) The choice of group-identity indicators does affect the per-
formance of the proposed method. When the number of
length-variability loading matrices is small (Graph 1), using
the largest eigenvalue as the group-identity indicator outper-
forms using the other two indicators. The performance gaps
between the three systems become closer when the number
of length-variability loading matrices increases. For Sys. 1,
however, when the number of loading matrices K increases
from 30 to 35, a non-trivial increase in EER is observed.
The performance dips of Sys. 1 are also observed in the
DET curves of Graph 4 and Graph 5 in Fig. 3. This kind
of performance dip does not happen in the other two sys-
tems, which suggests that using duration as group-identity
indicators is inappropriate.

2) The performance gap between PLDA-UP with and without

fast scoring depends on the number of length-variability
loading matrices. When K is small (e.g., K = 20), al-
though all of the three systems outperform conventional
PLDA, they are still not as good as PLDA-UP. When K
is larger than 25, there is no significant difference between
PLDA-UP and the proposed fast scoring method (except for
the problematic Sys. 1). For Sys. 2 and Sys. 3, although
their EER are slightly higher than that of PLDA-UP, their
minDCF are lower. The DET curves also suggest that Sys. 2
and Sys. 3 are as good as PLDA-UP.

3) Performance of PLDA-UP with fast scoring becomes satu-
rated when the number of length-variability loading matri-
ces is over 25. This suggests that, as far as performance
is concerned, we only need a small number of length-
variability loading matrices.

From the observations above, we conclude that the pro-
posed fast scoring method can perform as good as standard UP,
provided that the number of length-variability loading matrices
are large enough. Because Sys. 1 is problematic under some sit-
uations and Sys. 3 requires extra computation to perform eigen-
decomposition, we will focus on Sys. 2 in the sequel.

5.2. Running Time and Memory Consumption

Table 3 shows the running time and memory consumption of
conventional PLDA, PLDA with standard UP, and PLDA-UP
with fast scoring (Sys. 2).3 We can see that although UP has an
overwhelming advantage in performance, its computational cost
is also overwhelming. Specifically, standard UP takes almost 35
times longer to finish the scoring. Beside, the memory required
to store the covariance matrices of enrollment utterances also
poses a problem.

The fast scoring that we proposed avoids to evaluate Eq. 18
during verification. Therefore, its computation complexity is
the same as conventional PLDA. Besides, the proposed method
only needs to store a modest number of the pre-computed terms:
Ap,q,Bp,q,Cp,q, Dp,q , where p, q = 1, . . . ,K. Table 3 shows
that the fast scoring system only takes slightly more time than
conventional PLDA. As shown in Table 3, when K = 30, fast

3The running time is the total time for the whole evaluation in CC2
of NIST 2012 SRE.
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Figure 3: DET curves of three fast scoring systems with the number of length-variability loading matrices (K) varies from 20 to
45. DET curves of conventional PLDA and and PLDA with UP are also plotted as a reference. The characteristics of UUT are
quantified by α in Eq. 23. Sys. 1: α = utterance-length; Sys. 2: α = mean of the diagonal elements of UUT; Sys. 3: α =
largest eigenvalue of UUT. Con: Conventional PLDA; UP: PLDA with UP but no fast scoring (Eq. 17).

scoring only consumes 37% memory that standard UP needs
for performing the evaluation under CC2 and the scoring time
is 3.7% of the standard UP, while the performance is as good
as standard UP. In other words, the proposed method saves both
computation resource and memory space of speaker verification
systems while maintain the state-of-art performance on utter-
ances with arbitrary length.

6. Conclusions
This paper proposed a fast scoring method for PLDA with un-
certainty propagation. By substituting the session-dependent
loading matrix with the one trained from development data, the
proposed method enables us to pre-compute terms that reflect
the length-variability in i-vectors. Thus, the computational bur-
den during the verification can be greatly reduced. Experiments
on NIST 2012 SRE show that the proposed method can perform
as good as standard UP with a tiny fraction of scoring time that
UP takes. Besides, the memory consumption of the proposed
method does not increase quadratically with the i-vector dimen-
sion as would be the case in standard UP. This is an advantage
for speaker verification systems that have a large number of tar-
get speakers.
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