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Abstract

We present an effective, practical solution to the prob-
lem of uncertainty modeling in text-dependent speaker
recognition where “uncertainty” refers to the fact that fea-
ture vectors used for speaker recognition are necessarily
noisy in the statistical sense if they are extracted from
utterances of short duration. The idea is to apply the I-
Vector Backend probability model at the level of individ-
ual Gaussian mixture components rather than at the su-
pervector level. We show that (unlike the I-Vector Back-
end), this approach can be implemented in a way which
makes reasonable computational demands at verification
time. Uncertainty modeling enables us to achieve error
rate reductions of up to 25% on the RSR Part III speaker
verification task (compared to an implementation of the
Joint Density Backend [8] which treats point estimates of
supervector features as being reliable).

1. Introduction
This paper is concerned with backend modeling in
text-dependent speaker recognition where channel-
compensated Baum-Welch statistics are used as the fea-
ture representation. Considering that large universal
background models (e.g. 512 Gaussians) prove to be ef-
fective in text-dependent speaker recognition even though
test utterances are typically short (e.g. 2 seconds), these
Baum-Welch statistics are very sparse so that point esti-
mates of the features which are usually used to character-
ize speakers in text-dependent speaker recognition need
to be treated as uncertain.

How to deal with this uncertainty is an open prob-
lem in speaker recognition generally but some progress
has been made in the text-independent situation by char-
acterizing the uncertainty in point estimates of i-vectors
in a PLDA backend by means of posterior covariance
matrices specified by zero order Baum-Welch statistics
[1, 2]. The evidence in favour of this approach is not over-
whelmingly convincing (it has only been shown to work
well under conditions of extreme mismatch) and because
it depends critically on characterizing speakers by sub-
space methods (i-vectors or speaker factors), it has not
had much impact on the problem domain where it would

seem to be most acutely needed, namely text-dependent
speaker recognition with very short utterances.

Except in rare situations where large amounts of
background data happen to be available, best results
in text-dependent speaker recognition are obtained with
supervector-sized features rather than subspace methods.
PLDA cannot generally serve as a backend classifier, but
the Joint Density Backend [3, 4, 8] can play the role of
a trainable backend for text-dependent speaker recogni-
tion in its stead. The Joint Density Backend is based on
a model of the joint distribution of enrollment and test
feature vectors in a speaker verification trial under the
same speaker-hypothesis. It can be configured to work
with either supervector or subspace features. Although
we will occasionally refer to the subspace version of the
Joint Density Backend in order to explain how the ideas
presented in this paper build on our earlier work, we will
be concerned solely with the problem of extending the
capability of the supervector version of the Joint Den-
sity Backend to accommodate uncertainty modeling in
the present paper. We will show that on the RSR Part III
(random digits) development and evaluation test sets [5],
this uncertainty modeling results in error rate reductions
of 20% or more compared to the Joint Density Backend.

Although subspace methods are of limited use in text-
dependent speaker recognition, in studying the uncer-
tainty modeling problem it is natural to start with them
considering that some progress has already been made in
this way in the text-independent case. Because the re-
sults we obtained on text-dependent tasks with the un-
certainty propagation version of i-vector/PLDA were un-
satisfactory [6], we developed a more fundamental ap-
proach to the problem in [7]. Rather than treat the en-
rollment and test feature vectors in a target trial as being
statistically independent for the purpose of uncertainty
modeling (an obviously erroneous assumption made in
[1, 2]), we showed in that paper how to quantify the
uncertainty in the point estimates of such features in a
trial dependent way, so that the uncertainty in a test ut-
terance diminishes the more enrollment data is available.
When this uncertainty is accommodated in (the subspace
version of) the Joint Density Backend, it turns out that
the likelihood ratio calculations for speaker verification
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are formally equivalent to evidence calculations with i-
vector extractors having non-standard normal priors so
we dubbed this approach the “I-Vector Backend”. In this
paper, we develop a similar approach to accommodating
uncertainty in the supervector version of the Joint Density
Backend, leading to the “Hidden Supervector Backend”.
(Appendix A in this paper shows how the I-Vector Back-
end and the Hidden Supervector Backend can be treated
in a unified way.)

It turns out that, as in the subspace case, it is easier
to estimate robustly the joint distribution of hidden vari-
ables which account for enrollment and test feature vec-
tors than it is to estimate the joint distribution of point
estimates of these feature vectors (as in the original for-
mulation of the Joint Density Backend). A particular con-
sequence of this is that, in the RSR Part III application do-
main, we can make the parameters of the Hidden Super-
vector Backend digit-dependent, as in the I-Vector Back-
end [7] (but contrary to both the subspace or supervector
versions of the Joint Density Backend).

In [8] we described another method we developed to
introduce digit-dependency into the supervector version
of the Joint Density Backend which we refer to as com-
ponent fusion. (The idea is to weight the contributions
of individual mixture components to the speaker verifi-
cation likelihood ratio in a digit-dependent way. This
method only works with supervector features, not sub-
space features.) We will also show in this paper that this
component fusion method carries over successfully to the
Hidden Supervector Backend.

We note that we have previously performed an exten-
sive study of the Joint Density Backend on the RSR Part
III dataset [8]. The results obtained in this paper with the
Hidden Supervector Backend can be directly compared
with the results reported there and they turn out to be uni-
formly better.

2. Background
This paper builds on a series of earlier contributions [7,
4, 8] which we summarize in this section.

2.1. JFA for Speaker Verification with Digits

We model speakers’ pronunciation of digits with a tied-
mixture HMM (one set of mixture weights for each digit)
combined with a JFA model of digit supervectors of the
form

m+Dz(d) +Uxr. (1)

Here d is used to indicate a generic digit. Using a tied
mixture HMM (in which a single set of “mixture compo-
nents” is shared among the digits) enables channel effects
to be modeled by an utterance level hidden variable xr (r
for recording); z(d) characterizes a speaker’s pronuncia-
tion of the digit and serves as a supervector sized feature

for speaker recognition. The matrix D is estimated by
relevance MAP [9].

An alternative configuration ignores the left-to-right
structure of enrollment and test utterances altogether. If
Baum-Welch statistics are collected with a conventional
UBM (or by forced alignment with a speech recognition
system as in Appendix A) we can model utterance super-
vectors as

m+Dz +Uxr (2)

where the hidden variable z is digit-independent. In this
case, enrollment or test data is characterized by a single
“global” z-vector. Following the terminology in [10, 8]
we refer to the digit-dependent vectors z(d) in (1) as
“local” z-vectors. We will restrict ourselves to local z-
vectors in the expository portion of this paper but we
will report the results of speaker verification experiments
with both local and global z-vectors. As in [8], local and
global feature vectors fuse well at the score level.

2.2. The Joint Density Backend (Supervector Ver-
sion)

At enrollment time, each speaker utters the ten digits in
random order several times. Because z-vectors are tied
across all utterances by a speaker, the enrollment pro-
cess results in one z-vector per digit (regardless of the
number of recordings available for enrollment). We de-
note these z-vectors by ze(d) (e for enrollment and d for
digit); likewise zt(d) indicates a z vector extracted from
a test utterance.

The supervector version of the Joint Density Backend
[4, 8] forms a likelihood ratio for speaker verification of
the form

∏

d

PT (ze(d), zt(d))

PN (ze(d), zt(d))
(3)

where d ranges over digits in the test utterance, PT refers
to the joint distribution of feature vector pairs occurring
in target trials and PN to the joint distribution in non-
target trials. We assume that the denominators in (3) fac-
torize as PT (ze(d))PT (zt(d)). Furthermore, we decom-
pose each factor in (3) as a product of terms of the form

PT (ze,c(d), zt,c(d))

PT (ze,c(d))PT (zt,c(d))
or

PT (zt,c(d)|ze,c(d))
PT (zt,c(d))

(4)

where, for each mixture component c, ze,c(d) is the cor-
responding subvector of ze(d) and similarly for zt,c(d).

2.2.1. Semi-Diagonal Constraints

We model the joint distribution of ze,c(d) and zt,c(d) un-
der the same-speaker hypothesis as a multivariate Gaus-
sian of dimension 2F where F is the dimension of the
acoustic feature vectors. It is not possible in practice to
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estimate full covariance matrices for this purpose so we
treat the individual components of the acoustic feature
vectors as being statistically independent and model the
2F × 2F dimensional covariance matrices with diago-
nal blocks of dimension F × F . We use the term semi-
diagonal to refer to this structure.

2.2.2. Component Fusion

Clearly, it would be desirable to make the parameters of
the Joint Density Backend digit-dependent as the mixture
components which are best able to discriminate between
speakers are likely different for different digits. Estimat-
ing covariance matrices in a digit-dependent way does not
work in our experience, even if semi-diagonal constraints
are imposed. (For a given digit many of the mixture com-
ponents will be visited rarely and the corresponding co-
variance matrices cannot be estimated satisfactorily.)

On the other hand, we have found an effective way to
introduce digit-dependency into the Joint Density Back-
end by weighting the mixture component dependent fac-
tors in (4) in a digit-dependent way instead. Specifically,
we use regularized logistic regression to estimate a set of
C weights for each digit (where C is the number of mix-
ture components in the tied mixture codebook) [8].

2.3. I-Vector Backend

Our first clearly successful effort at uncertainty modeling
in text-dependent speaker recognition [7] used speaker
factors rather than z-vectors as features. In place of (1)
we assumed a JFA model of the form

m+ V y(d) +Uxr (5)

where the speaker factor vector y(d) is assumed to be of
low dimension. Denoting its dimension by R, as a proba-
bility model for the digits in a verification trial under the
same-speaker hypothesis we used an i-vector extractor of
dimension 2CF × 2R whose total variability matrix is
defined by

T =

(
V 0
0 V

)
. (6)

The rationale here is that for each digit d involved in
a verification trial, there is a hidden variable we(d)
(namely the speaker factor vector denoted by y(d) in
(5)) which represents the target speaker’s pronunciation
of the digit and a corresponding hidden variable wt(d)
for the speaker in the test utterance. The correspond-
ing CF dimensional supervectors are m+ V we(d) and
m + V wt(d) so we can represent the concatenation of
the two supervectors as

(
m
m

)
+

(
V 0
0 V

)(
we(d)
wt(d)

)

which has the form of an i-vector extractor if we define
the total variability matrix as in (6) and we take the “i-
vector” w to be the concatenation of we(d) and wt(d).
This i-vector model for supervectors of dimension 2CF
is only used to perform probability calculations with the
evidence formula given in Proposition 2 in Appendix B
(and not to extract features for speaker recognition).

2.3.1. Priors

To apply the evidence formula, we have to supply a prior
on w. In conventional i-vector modeling there is noth-
ing to be gained by using non-standard priors but for
our purposes we need two non-standard normal priors,
PT (w) and PN (w), to model the supervectors of dimen-
sion 2CF in target and non-target trials respectively.

We estimate PT (w) iteratively using the minimum
divergence updates described in Proposition 3 in Ap-
pendix B), after arranging the JFA training set into a col-
lection of target trials which simulates the development
and evaluation test sets. For each trial, we obtain a set
of Baum-Welch statistics of dimension 2CF by collect-
ing one set from the enrollment data and another from the
test data and concatenating the two. The prior PN (w) is
obtained by zeroing out the cross correlations in the co-
variance matrix which defines PT (that is, by treating the
enrollment and test utterances as being statistically inde-
pendent).

2.3.2. Predictive Likelihood Ratio

To perform speaker verification, for a given trial we could
concatenate the Baum-Welch statistics extracted from the
enrollment and test data (in the same way as we did in es-
timating PT (w)) and form a likelihood ratio for speaker
verification by evaluating the evidence twice, once with
PT (w) and once with PN (w). However this approach
would be computationally extravagant as it involves evi-
dence calculations with an i-vector extractor of rank 2R.

In fact the computation can be carried out efficiently
with the CF × R dimensional i-vector extractor defined
by setting T = V by taking advantage of the fact w de-
composes into two parts, one of which accounts for the
enrollment data and the other for the test data. (It is im-
portant to note that this decomposition would not be pos-
sible but for the block diagonal structure of T in (6).)
The idea is to calculate a predictive likelihood ratio of the
form P (T |E)/P (T ) where E stands for the enrollment
data and T the test data, rather than a joint likelihood ratio
of the form P (E, T )/P (E)P (T ).

Fix a digit d and a target speaker. To calculate the
numerator distribution P (·|E), take the first order Baum-
Welch statistics for the digit from the speaker’s enroll-
ment data and pad them with 0’s to obtain a full set of
statistics of dimension 2CF , and similarly for the zero
order statistics. Using the i-vector extractor of dimension
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2CF × 2R and the prior PT (w), calculate the posterior
distribution on the hidden variable w as in Proposition 1
in Appendix B). Interpreting w as the concatenation of
the enrollment hidden variable we(d) and the test utter-
ance hidden variable wt(d), we obtain a distribution on
wt(d) by marginalization. Performing evidence calcula-
tions with the i-vector extractor of dimension CF × R
and this distribution as the prior enables us to evaluate
P (T |E) for trials involving the given target speaker. As
for P (T ), we simply marginalize PN (w) to obtain an-
other, speaker-independent, prior on wt(d) and calculate
the evidence again.

2.3.3. Digit Dependency

We can also take advantage of the block diagonal struc-
ture in (6) in another way, namely to impose semi-
diagonal constraints on the covariance matrix that spec-
ifies PT (w). We showed in [7] how this enabled us
to make the priors PT (w) and PN (w) digit-dependent.
This strategy is unsuccessful with the Joint Density Back-
end but it works very well with the I-Vector Backend.

3. Hidden Supervector Backend
We now apply the idea underlying the I-Vector Backend
at the level of individual mixture components rather than
at the level of supervectors. This leads us to derive a
version of the Joint Density Backend described in Sec-
tion 2.2 which works with supervectors which are hidden
rather than observable (whence the “Hidden Supervector
Backend”).

For a digit d and mixture component c, let Oe,c(d)
be the collection of acoustic observation vectors for the
digit and mixture component in the enrollment data and
let Ot,c(d) be the collection of acoustic observation vec-
tors in the test data. In a manner analogous to (4), we
will calculate a likelihood ratio for speaker verification
by combining terms of the form

P (Ot,c(d)|Oe,c(d))

P (Ot,c(d))
(7)

and evaluate these predictive likelihood ratios in a way
which is formally identical to the evidence calculations
with the I-Vector Backend described in the Section 2.3.2.

Fix a mixture component c. We create two copies
of the mixture component which we label by e and t
(one to model enrollment data and the other to model test
data). For a given speaker verification trial, we concate-
nate the zero and first order channel-compensated Baum-
Welch statistics Ne and F e (extracted from the enroll-
ment data Oe,c(d)) and Nt and F t (extracted from the
test data Ot,c(d)). We model these concatenated Baum-
Welch statistics with an “i-vector extractor” of dimension
2F × 2R subject to block diagonal constraints analogous
to (6). Note that this Lilliputian “i-vector extractor” to-

gether with the prior under the same-speaker hypothesis,
PT (w), vary from one mixture component to another and
have to be estimated accordingly.

As in the I-Vector Backend, the block diagonal struc-
ture (6) enables us to decompose the i-vector w into two
parts, we and wt, one of which accounts for the enroll-
ment data and the other for the test data. Hence a pre-
dictive likelihood ratio of the form (7) can be calculated
efficiently just as in the case of the I-Vector Backend
(Section 2.3.2), assuming that the prior PT (w) has been
trained by minimum divergence estimation. Moreover,
this structure enables us to impose semi-diagonal con-
straints on the covariance matrix which defines the prior,
as in the case of the I-Vector Backend (Section 2.3.3),
although some extra clarification is needed for this.

3.1. Digit Dependency

Note that the minimum divergence estimation formulas
which we use to estimate the prior PT (w) have to be ap-
plied for each mixture component separately. In mak-
ing the prior digit-dependent as well we are going to en-
counter very sparse Baum-Welch statistics so it is not
obvious that, even with semi-diagonal constraints, a co-
variance matrix can be trained for each mixture compo-
nent/digit pair. (In fact, this doesn’t work at all in the case
of the supervector version of the Joint Density Backend.)

Fortunately the minimum divergence updates in
Proposition 3 behave sensibly in situations where train-
ing data is scarce. Indeed, it is easily verified that in the
extreme case were there are no acoustic observations for a
given mixture component, the initial estimate of the prior
is a fixed point for the re-estimation procedure. It fol-
lows that, contrary to our experience with the Joint Den-
sity Backend but similar to our experience in [7], there
is no difficulty in making the prior digit-dependent. (For
each mixture component, we first train the prior in a digit-
independent way and use this to initialize digit-dependent
training.)

When we come to describe our experiments in
Section 4, we will report results obtained with digit-
dependent versions of both the Hidden Supervector Back-
end and the Joint Density Backend (supervector ver-
sion). In the case of the Joint Density Backend, digit-
dependency has a different meaning — it refers to com-
ponent fusion scheme discussed in Section 2.2.2. But we
will also show that component fusion can be success-
fully accommodated by the Hidden Supervector Back-
end. Thus two types of digit-dependency are available
to the Hidden Supervector Backend and it turns out that
they combine well with each other.

3.2. Computational Efficiency

Although the matrices V that specify the mixture compo-
nent dependent “i-vector extractors” (6) can be estimated
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in the usual way using the maximum likelihood II prin-
ciple, our experience has been that this leads to minimal
improvements at substantial computational cost. So for
practical purposes it seems to be best to take R = F
and V to be the identity matrix for each mixture compo-
nent. (In other words, the prior PT (w) is made to bear
the full burden of modeling same-speaker trials.) In this
case, Baum-Welch statistics for the given mixture compo-
nent can be regarded as summarizing noisy observations
of a hidden F -dimensional feature vector. Concatenating
these feature vectors gives a hidden supervector — these
are the “hidden supervectors” referred to in the introduc-
tion.

The posterior calculations in Proposition 1 in Ap-
pendix B simplify considerably in the case of identity
matrices. Recall that we need to perform this posterior
calculation in two situations. Firstly, at enrollment time
(and in the course of training the prior) we need to per-
form a posterior calculation using a 2F×2F dimensional
prior precision matrix P that satisfies semi-diagonal con-
straints. Let F be the 2F ×1 vector obtained by concate-
nating F e and F t. LetN be the 2F ×2F block diagonal
matrix whose diagonal blocks are NeI and NtI . Then
(using the notation of Proposition 1) the posterior covari-
ance and expectation of w are given by

C = (P +N)
−1

〈w〉 = C (Pµ+ F ) . (8)

Note that semi-diagonal constraints on the precision ma-
trix P are inherited by P +N and hence by C.

It follows from this that the linear algebra needed
for posterior calculation performed at verification time
involves only strictly diagonal matrices of dimension
F × F . (See the description of the predictive likelihood
ratio calculation in in Section 2.3.2.) Thus the computa-
tional cost of the Hidden Supervector Backend is essen-
tially the same as that of the Joint Density Backend.

3.3. Channel Compensation

Up to now we have abstracted channel effects. In en-
rolling a speaker, we create a set of synthetic Baum-
Welch statistics for each digit d by taking the Baum-
Welch statistics in each recording, removing the channel
effects and pooling over the enrollment recordings (and
similarly for a test utterance). If the Baum-Welch statis-
tics for recording r and mixture component c and digit d
are denoted by Nr

c (d) and F r
c(d) then the synthetic zero

and first order statistics are

Nc(d) =
∑

r

Nr
c (d)

F c(d) =
∑

r

(F r
c(d)−Nr

c (d)U c 〈xr〉) (9)

where 〈xr〉 is a point-estimate of the hidden variable xr

in (1). These channel-compensated Baum-Welch statis-

tics serve as the “features” for the Hidden Supervector
Backend.

3.4. Normalizing the Baum-Welch Statistics

It is well known that inserting a non-linear length normal-
ization step between a JFA-based feature extractor and
a Gaussian backend such as PLDA or the Joint Density
Backend effectively compensates for the unsatisfactory
Gaussian assumptions on which JFA is based. The ques-
tion arises as to whether a similar type of normalization
should be performed on the synthetic Baum-Welch statis-
tics before presenting them to the I-Vector Backend. The
answer is yes, and it proves to be very effective.

In the JFA model, the posterior covariance and expec-
tation of the hidden variable zc(d), Kc(d) and 〈zc(d)〉,
are given in terms of the corresponding synthetic Baum-
Welch statistics by

Kc(d) = (I +Nc(d)D
∗
cDc)

−1

〈
zdc(d)

〉
= Kc(d)D

∗
cF c(d)

for each mixture component c. These expressions enable
us to evaluate

〈
‖z(d)‖2

〉
since

〈
‖zc(d)‖2

〉
= ‖ 〈zc(d)〉 ‖2 + tr (Kc(d)) . (10)

Because the z-vectors are supposed to have a standard
normal distribution, 1

CF ‖z(d)‖2 ought to be equal to 1
on average. This suggests that the first order synthetic
statistics should be scaled so as to ensure that, for each
spoken digit, 1

CF

〈
‖z(d)‖2

〉
= 1. (We leave the zero or-

der statistics unchanged.) An experiment reported in Ap-
pendix A shows the utility of including the contribution
of the posterior covariance matrices in (10).

4. Experiments
These experiments were conducted with a standard, 60-
dimensional PLP front end on the RSR2015 Part III de-
velopment and evaluation test sets. Utterances of less
than 1 second duration or SNR of less than 15 dB were
rejected so that not all trials were performed [8].

To train the Hidden Supervector and Joint Density
Backends, we devised a backend training set by organiz-
ing the RSR2015 Part III background digit data into a set
of 14 K target trials intended to simulate the trials in the
development test set. We used the same data (organized
in the conventional way) for JFA training.

For the Joint Density Backend, we present results ob-
tained with both “local” and “global” z-vectors as ex-
plained in Section 2.1 and [10]. Global z-vectors are
interesting to work with because their performance can
be measured against a simple GMM/UBM benchmark
whose performance on this task turns out to surprisingly
good. On the other hand, the digit-dependent versions of
the Joint Density and Hidden Supervector Backends can
only be explored if local z-vectors are used.
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norm.? EER (M/F) DCF (M/F)
1 GMM - 4.8%/8.0% 0.217/0.356
2 JDB - 4.8%/7.6% 0.219/0.353
3 HSB × 4.5%/6.8% 0.201/0.338
4 HSB X 3.9%/6.1% 0.177/0.307

Table 1: Results on the development set obtained with
128 Gaussians. The systems are a GMM/UBM sys-
tem, the Joint Density Backend (JDB) and the Hid-
den Supervector Backend (HSB) both with global z-
vectors. Baum-Welch statistics normalization is indicated
by “norm”.

The Hidden Supervector Backend is presented with
Baum-Welch statistics extracted and normalized with a
JFA model rather than with feature vectors, so in this case
the terms local and global have to be understood as refer-
ring to Baum-Welch statistics. It is a convenient abuse of
language to refer to local and global z-vectors in this case
as well (this can be justified if the terminology is under-
stood to refer to the configuration of the underlying JFA
model).

All results presented were obtained with s-norm score
normalization.

4.1. Results on the development set (128 Gaussians)

The results of our first experiment are summarized in Ta-
ble 1. We compared the GMM/UBM benchmark (line 1)
with three global z-vector backends, namely the the Joint
Density Backend (line 2) and two versions of the Hid-
den Supervector Backend, one with unnormalized Baum-
Welch statistics (line 3) and the other with normalized
Baum-Welch statistics (line 4). The metrics are the equal
error rate and the detection cost function defined in the
2008 NIST speaker recognition evaluation plan. The Hid-
den Supervector Backend achieves large error rate re-
ductions with about half of the improvement being ac-
counted for by the procedure for normalizing the Baum-
Welch statistics discussed in Section 3.4. We used a rele-
vance factor of 2 both for MAP adaptation (in the case of
the GMM/UBM benchmark) and to train the JFA model
which we used for the Joint Density Backend and two the
Hidden Supervector Backends. We replicated the experi-
ment in line 4 of Table 1 with different relevance factors
in order to explore the effect of the relevance factor in
normalizing the Baum-Welch statistics (as described in
Section 3.4). The results are shown in Table 2 where it is
apparent that the normalization procedure is fairly insen-
sitive to the relevance factor (and a relevance factor of 2
turns out to have been a good choice).

Table 3 contains results on the development set ob-
tained with local z-vectors and 128 Gaussians. Mak-
ing the Joint Density and Hidden Supervector Backends
digit-dependent results in major improvements (although,

r EER (M/F) DCF (M/F)
0.5 4.3%/6.6% 0.193/0.329
1 4.1%/6.2% 0.179/0.310
2 3.9%/6.1% 0.177/0.307
4 3.9%/6.3% 0.183/0.307

Table 2: The effect of varying the relevance factor r in
JFA training on the Hidden Supervector Backend

norm.? digit- EER DCF
dep.? (M/F) (M/F)

1 JDB - × 5.7%/8.3% 0.248/0.397
2 JDB - X 4.4%/5.6% 0.201/0.309
3 HSB × × 5.5%/7.8% 0.247/0.392
4 HSB × X 4.9%/6.7% 0.215/0.343
5 HSB X × 5.7%/7.9% 0.244/0.398
6 HSB X X 4.2%/5.4% 0.184/0.279

Table 3: Results on the development set obtained with lo-
cal z-vectors and 128 Gaussians highlighting the benefit
of digit-dependency in the backends

as explained in Sections 2.2 and 14, different mechanisms
are used to achieve digit dependency in the two cases).
Normalizing the Baum-Welch statistics before presenting
them to the Hidden Supervector Backend is again seen to
result in substantial improvements.

4.2. Results on the development set (512 Gaussians)

The results we obtained on the development set using 512
Gaussians with global and local z-vectors are presented
in Tables 4 (global z-vectors) and 5 (local z-vectors).
Baum-Welch statistics were normalized in the case of the
Hidden Supervector Backend and, in the case of local z-
vectors, both the Joint Density Backend and the Hidden
Supervector Backend were made digit-dependent. The
highlighted result in the last line of the table refers to a
system that exploits both types of digit dependency avail-
able to the Hidden Supervector Backend, namely digit
dependent priors and the component fusion method.

Note that the results obtained with 512 Gaussians are
uniformly better than those obtained with 128 Gaussians
despite the fact that the test utterances are of short du-
ration. This phenomenon motivated us to explore uncer-
tainty modeling.

4.3. Results on the evaluation set

Finally we report results obtained by score level fusion
of local and global hidden supervector systems with 512
Gaussians on both the evaluation and development sets
in Table 6. In the case of the local z-vector system, we
used both digit-dependent priors and the component fu-
sion technique.
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r EER (M/F) DCF (M/F)
1 GMM 2 4.7%/8.2% 0.195/0.336
2 JDB 2 4.3%/6.1% 0.196/0.288
3 HSB 0.25 3.5%/4.9% 0.159/0.245
4 HSB 0.5 3.4%/4.7% 0.148/0.234
5 HSB 1 3.3%/4.6% 0.148/0.234
6 HSB 2 3.3%/4.6% 0.151/0.240

Table 4: Results on the development set obtained with
512 Gaussians and global z-vectors.

r EER (M/F) DCF (M/F)
JDB 2 3.9%/5.2% 0.184/0.259
HSB 0.125 4.0%/4.5% 0.178/0.232
HSB 0.25 3.8%/4.4% 0.171/0.220
HSB 0.5 3.9%/4.4% 0.169/0.218
HSB 1 4.0%/4.5% 0.171/0.224
HSB 2 4.0%/4.9% 0.178/0.234
HSB 4 4.3%/5.5% 0.189/0.252
HSB 8 4.6%/5.9% 0.200/0.267
HSB + fusion 0.5 3.6%/3.9% 0.152/0.197

Table 5: Results on the development set obtained with
512 Gaussians, local z-vectors and digit-dependent back-
ends

5. Conclusion
Using the RSR Part III development and evaluation sets
as a test bed, we have shown that modeling the uncer-
tainty in the point estimates of supervector sized features
used for text-dependent speaker recognition can produce
substantial gains in performance. We obtained error rate
reductions of up to 25% in the case of global z-vectors
(Tables 1, 4 and 7); for local z-vectors, the improvements
were less dramatic but they were consistent across all ex-
periments (Tables 3 and 5). Unlike the I-Vector Backend
(whose run time computational requirements are equiv-
alent to an i-vector extraction per trial), the Hidden Su-
pervector Backend can be configured in a way that makes
reasonable computational demands (Section 3.2). Thus
the Hidden Supervector Backend can claim to be a prac-

EER (M/F) DCF (M/F)
dev local 3.7%/3.8% 0.149/0.193
dev global 3.2%/4.5% 0.148/0.232
dev fusion 2.9%/3.6% 0.131/0.186
eval local 2.6%/4.5% 0.134/0.211
eval global 2.7%/4.7% 0.140/0.236
eval fusion 2.3%/4.0% 0.122/0.192

Table 6: Results on the development and evaluation sets
obtained with local and global Hidden Supervector sys-
tems.

tical solution to the problem of uncertainty modeling in
text dependent speaker recognition.
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APPENDICES

A. Collecting Baum Welch Statistics with a
Speech Recognition System

Given the success of phonetic DNNs in text-independent
speaker recognition (where ground truth phonetic tran-
scriptions are unavailable), it is natural to use forced
alignments obtained with a speech recognition system to
collect Baum-Welch statistics in text-dependent speaker
recognition (where ground truth phonetic transcriptions
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EER (M/F) DCF (M/F)
1 3.9%/4.8% 0.172/0.283
2 4.7%/5.2% 0.188/0.294
3 5.6%/6.1% 0.252/0.336
4 3.5%/4.1% 0.166/0.246
5 3.5%/4.0% 0.152/0.197

Table 7: Results on the development set obtained with the
Hidden Supervector Backend when Baum-Welch statis-
tics are collected by forced alignment.

are available). This leads to another way of implement-
ing the Hidden Supervector Backend; results are reported
in Table 7. Note that although the features here are global
rather than local z-vectors, using forced alignments im-
plicitly models the left-to-right structure in the data. The
results in line 1 of Table 7 were obtained with a speech
recognition system trained on conversational telephone
speech; the number of active senones in the digit vocabu-
lary was found to be 276. We replicated this experiment
in line 2, suppressing the covariance term in (10). Note
that this leads to a substantial degradation. Training the
decision tree on the RSR Part III background data turns
out to be susceptible to over fitting: 180 senones (line 4)
gives much better results than 528 senones (line 3). Line
5 replicates the experiment in line 3 using full rather than
diagonal covariance matrices to whiten the Baum-Welch
statistics. The results in line 5 of Table 7 are as good as
those in the last line of Table 5 (and they have the ad-
vantage of being obtained without the component fusion
technique which requires a development set in order to
estimate the fusion weights).

B. I-Vector Extractors with Non-Standard
Priors

The I-Vector Backend and the Hidden Supervector Back-
end can be treated in a unified way by taking the num-
ber of mixture components, C, to be twice the number
mixture components in the UBM in the former case and
C = 2 in the latter. We denote the zero and first order
statistics associated with a mixture component c by Nc

and F c. We assume that these are pre-whitened as in
[11].

We postulate a hidden variablew of dimension R×1
and we interpret the Baum-Welch statistics associated
with the mixture component c as summaries of a collec-
tion of noisy observations O of T cw. The prior on w
is assumed to be Gaussian with mean µ and precision
matrix P ; we denote it by P (w). We evaluate the proba-
bility ofO (the “evidence”) by integrating out the hidden
variable:

P (O) =

∫
P (O|w)P (w)dw.

Proposition 1. The posterior distribution Q(w) is Gaus-
sian with covariance matrix C and mean 〈w〉 given by

C =

(
P +

∑

c

NcT
∗
cT c

)−1

(11)

〈w〉 = C

(
Pµ+

∑

c

T ∗
cF c

)
.

Proposition 2. Letting 〈s〉 = T 〈w〉, the log evidence is
given (up to irrelevant additive terms) by

∑

c

〈s∗c〉F c −
1

2

∑

c

Nc 〈s∗c〉 〈sc〉+
1

2
ln |PC|

− 1

2
(〈w〉 − µ)∗P (〈w〉 − µ). (12)

Proof. We use the formula for the variational lower
bound on the log evidence lnP (O), namely

〈lnP (O|w)〉 − D (Q(w) || P (w)) . (13)

Here Q(w) refers to the posterior distribution ofw given
O and 〈·〉 to the posterior expectation. The divergence
can be calculated using the formula for the divergence
between 2 R-dimensional Gaussians, giving

−R

2
− 1

2
ln |PC|+ 1

2
tr (PC) +

1

2
(〈w〉 − µ)∗P (〈w〉 − µ).

For the first term in (13), ignoring the contributions of
terms which involve only the zero order and second or-
der statistics (they are not needed to calculate evidence
ratios), we can write this as

−1

2

∑

c

(
− 2 〈s∗c〉F c +Nc 〈s∗c〉 〈sc〉+Nc tr (Kc)

)

where, for each c,Kc = Cov (sc, sc) so that tr (Kc) =
tr (T ∗

cT cC). The formula (11) for C shows that when
the contribution of these matrix traces is combined with
the term − 1

2 tr (PC) in the expression for the diver-
gence, the result reduces to − 1

2R and the required for-
mula for the log evidence follows.

Proposition 3. The minimum divergence re-estimation
formulas for the prior are

µ =
1

S

∑

s

〈w(s)〉

P−1 =
1

S

∑

s

〈w(s)w∗(s)〉 − µµ∗ (14)

where S is the total number of sets of Baum-Welch statis-
tics available for training and, for each set s,w(s) is the
corresponding hidden variable.
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