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Abstract

In this study we address the problem of training a neural-
network for language identification using both labeled
and unlabeled speech samples in the form of i-vectors.
We propose a neural network architecture that can also
handle out-of-set languages. We utilize a modified ver-
sion of the recently proposed Ladder Network semisu-
pervised training procedure that optimizes the reconstruc-
tion costs of a stack of denoising autoencoders. We show
that this approach can be successfully applied to the case
where the training dataset is composed of both labeled
and unlabeled acoustic data. The results show enhanced
language identification on the NIST 2015 language iden-
tification dataset.

1. Introduction
The purpose of automatic language recognition is to iden-
tify which language is spoken from a speech sample.
There are many characteristics of speech that could be
used to identify languages. Languages are made up of
different sounds that form phonemes, so it is possible
to distinguish languages based on the acoustic features
present in the speech signal. There are of course also lex-
ical information. Languages are separable by the vocab-
ulary, or sets of words and syntactic rules. In this study
we focus on language identification that is based solely
on the acoustic information conveyed by the speech sig-
nal. The applications of language identification systems
include multilingual translation systems and emergency
call routing, where the response time of a fluent native
operator might be critical.

The impressive performance improvement obtained
using deep neural networks (DNNs) for automatic speech
recognition (ASR) [1] have motivated the application of
DNNs to speaker and language recognition. DNN have
been trained for a different purpose to learn frame-level
features that were then used to train a secondary classifier
for the intended language recognition task [2][3]. DNNs
have also been applied to directly train language classifi-
cation systems [4][5].

In this study we applied DNN to language recogni-

tion and report performance on the NIST 2015 Language
Recognition i-vector Machine Learning Challenge [6]. In
this task there are i-vectors examples from 50 languages.
There are also unlabeled training data and we also need
to address the problem of out-of-set languages that can
appear in both the unlabeled training data and the test set.
In this study we propose a DNN based approach that ad-
dresses both issues of unlabeled training data and out-of-
set examples. Most previous DNN learning approaches
have used unlabeled data only for pre-training which is
a way to initialize the weights of the network followed
by normal supervised learning. The standard pre-training
strategy is based on a greedy layer-wise procedure us-
ing either Restricted Boltzmann Machines (RBM) [7] or
noisy autoencoders [8]. In contrast, here we aimed to
explicitly incorporate the unlabeled data into the cost-
function that is optimized in the training step.

Our approach is based on the recently proposed Lad-
der Network training procedure that has proven to be very
successful, especially in cases where the training dataset
is composed of both labeled and unlabeled data [9] [10].
In addition to the supervised objective, the Ladder Net-
work also has an unsupervised objective corresponding
to the reconstruction costs of a stack of denoising au-
toencoders. However, instead of reconstructing one layer
at a time and greedily stacking, an unsupervised objec-
tive involving the reconstruction of all layers is optimized
jointly by all parameters (with the relative importance of
each layer cost controlled by hyper-parameters).

The paper proceeds as follows. In the next section
we present a brief overview of Ladder Networks. We
then describe a semisupervised language identification
system based on Ladder Networks. We demonstrate the
performance improvement of the proposed method on
a dataset from the NIST 2015 Language Recognition i-
vector Challenge [6].

2. The Ladder Network Architecture

In this section we give a brief overview of the Ladder
Network training technique. A detailed description of
Ladder Networks can be found in [9] [10]. Assume we
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Figure 1: A conceptual illustration of the Ladder Network for L = 2 [9].

are given training data consisting of n labeled examples
x1, ..., xn ∈ Rd with labels c1, ..., cn ∈ {1, ..., k} and
m−n additional unlabeled examples xn+1, ..., xm. We
assume that the unrevealed labels belong to the same set
{1, ..., k}.

Our goal is to train a fully connected multi-layer DNN
using both the labeled and the unlabeled training data.
Each layer of the network is formalized as a linear trans-
formation followed by a non-linear activation function φ:

h0 = x

zl =Wlhl−1, l = 1, ..., L

hl = φ(zl)

(1)

Softmax is used as the non-linear activation function in
the last layer to compute the output class distribution
hL = p(y|x). In the Ladder Network training procedure
in addition to the standard forward pass, we also apply a
corrupted forward pass which is implemented by adding
isotropic Gaussian noise to the input and to all hidden
layers:

h̃0 = x̃ = x+ noise

z̃l =Wlh̃l−1 + noise, l = 1, ..., L

h̃l = φ(z̃l)

(2)

Denote the soft-max output obtained by the noisy-pass

by ỹ. We view the noisy feed-forward pass as a data-
encoding procedure that is followed by a denoising de-
coding pass whose target is the result of the noise-less
forward propagation at each layer. The decoding proce-
dure is defined as follows:

uL = h̃L

ẑL = g(z̃L, uL)

ul = Vl+1ẑl+1, l = L−1, ..., 0
ẑl = g(z̃l, ul)

x̂ = ẑ0

(3)

where Vl is a weight matrix from layer l to layer l−1,
with the same dimensions of W

>
l . The function g(·, ·) is

called the combinator function as it combines the vertical
ul and the lateral z̃l connections (also called skip con-
nections) in an element-wise fashion in order to estimate
zl. The estimation is linear as a function of z̃l whose co-
efficients are non-linear functions of ul. A comparison
of other possible choices for the combinator function is
presented in [11]. The resulting encoder/decoder archi-
tecture thus resembles a ladder (hence the name Ladder
Networks). Figure 1 illustrates a ladder structure with
two hidden layers.

The concept of batch normalization was recently pro-
posed by Ioffe and Szegedy [12] as a method to improve
convergence as a result of reduced covariance shift. In
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batch normalization, we compute the running mean and
variance of hidden units over the batch, and use them to
“whiten” hidden units in each mini-batch. In Ladder Net-
works batch normalization plays another crucial role of
preventing encoder and decoder collapse to a trivial so-
lution of a constant function that can be easily denoised.
Note that for a standard autoencoder this cannot happen
since we cannot change the input feature vector we want
to reconstruct. To simplify the presentation of the Ladder
Network we ignored the batch normalization step that is
incorporated in each layer of the Ladder Network.

The cost function for training the network is com-
posed of a supervised objective and an unsupervised au-
toencoder objective. The supervised cost Cs is the stan-
dard likelihood function which is defined as the average
negative log probability of the noisy output ỹ matching
the target ct given the input xt:

Cs = −
1

n

n∑

t=1

log p(ỹ = ct|xt)

Note that, unlike standard DNN, the likelihood function
is computed here based on the noisy network (and hence
the back-propagation procedure is applied to the noisy
feed-forward step). The noise is used here to regularize
supervised learning in a way similar to the weight noise
regularization method [13] and dropout [14].

The cost of the standard denoising autoencoder is the
input reconstruction error [15] [16]. Here the autoen-
coder cost function is the reconstruction error of the input
along with all the network layers. The error here is de-
fined as the distance of the denoised decoded value from
the noise-less forward value at each layer. The unsuper-
vised ladder cost function Cd is:

Cd =

L∑

l=0

λlC
(l)
d =

1

m

L∑

l=0

λl
wl

m∑

t=1

‖zl,t − ẑl,t‖2 (4)

where wl is the layer’s width, m the number of training
samples, and the hyperparameter λl is a layer-wise mul-
tiplier determining the importance of the denoising cost.
zl,t is the noise-free hidden layer obtained from the in-
put xt and ẑl,t is the corresponding decoded layer. The
target of the encode/decode at each layer is the result of
the noise-less forward propagation. Note that the ladder-
autoencoder cost function does not use the labels and
therefore it can be applied to both labeled and unlabeled
training data.

A recent study [11] conducted an extensive experi-
mental investigation of variants of the Ladder Network in
which individual components were removed or replaced
to gain insights into their relative importance. The au-
thors found that all of the components were necessary for
optimal performance. Ladder Networks have been found
to obtain state-of-the-art results on standard datasets with
only a small portion of labeled examples [9]. This con-
firms a current trend in Deep Learning that, while recent

progress in DL (e.g. [12] [14]) applied on large labeled
datasets does not rely on any unsupervised pretraining,
semisupervised learning might instead be crucial for suc-
cess when only a small amount of labeled data is avail-
able.

3. Dataset and Evaluation Metrics

The 2015 language recognition i-vector challenge [6]
covers 50 target languages and a set of unnamed “out-of-
set” (oos) languages. Labeled training data (300 speech
segments per language) were provided for the target lan-
guages and a set of approximately 6,500 unlabeled ex-
amples covering the target and out-of-set languages was
provided for development. The test set consisted of
6,500 test segments covering the target and out-of-set lan-
guages. The speech duration of the audio segments used
to create the i-vectors for the challenge were sampled
from a log-normal distribution with a mean of approxi-
mately 35s. The speech segments are derived from con-
versational telephone and narrow-band broadcast speech
data. Each speech segment is represented by an i-vector
of 400 components [17].

The task consists of classifying each speech segment
as either one of the 50 target languages or as an out-of-
set. According to the challenge rules [18] the goal is to
minimize the following cost function:

Cost =
1−poos
k

·
k∑

i=1

perror(i) + poos · perror(oos) (5)

where k = 50, poos = 0.23 is (assumed to be) the frac-
tion of out-of-set examples in the test set and

perror(i) =
# errors-class-i
# trials-class-i

is the fraction of examples in the test set with label i that
were misclassified.

4. Model and Training

4.1. Network and cost function

Assume we are given training data consisting of n la-
beled examples x1, ..., xn ∈ Rd with labels c1, ..., cn ∈
{1, ..., k}. We also have a development set xn+1, ..., xm
with unspecified labels. These unspecified labels include
all k target labels and multiple additional out-of-set (oos)
labels. Since we need to take care of the oos labels, we
construct a DNN whose soft-max output layer has k+1
outputs corresponding to the k labels and to an out-of-
set decision. Note that in order to train a network with
an oos explicit decision, we cannot rely only on in-set
labeled data.
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We applied the Ladder Network training scheme to
take maximum advantage of the information conveyed
in the unlabeled data. We first used the same ladder re-
construction error cost function that was described in the
previous section. We used additional cost function that
is composed of two components. The first score is the
negative likelihood score of the labeled data:

C1 = − 1

n

n∑

t=1

log p(ỹ = ct|xt). (6)

where ỹ is the soft-output of the noisy network. Denote
the percentage of oos examples in the unlabeled develop-
ment set (and in the test set) by poos. We assumed that
poos is given. We further assumed that there is an equal
number of examples from each one of k classes in the un-
labeled part of the training set (and in the test set). Define
the estimated average label frequency over all the unla-
beled set as follows:

pav(i) =
1

m

n+m∑

t=n+1

p(ỹ = i|xt), i = 1, ..., k

and

pav(oos) =
1

m

n+m∑

t=n+1

p(ỹ = oos|xt).

The second score encourages the estimated labels over
all the development set to maintain the (assumed to be)
known label distribution. The score is defined as follows:

C2 = −poos log pav(oos)−
1−poos
k

k∑

i=1

log pav(i). (7)

In practice when we optimized the network parameter us-
ing mini-batches, we computed this score on each mini-
batch instead of the entire development set. We set the
size of the mini-batch to be 1024 which is large enough
in order to assume, based on the law of large numbers,
that the label frequency within the mini-batch is similar
to the overall label frequency. The cost function C2 is
not part of the original ladder framework. It represents
the assumption that the labeled training data and the un-
labeled development set have similar label statistics. It

also assumes a predefined relative number of oos exam-
ples. We show in the experiment section that, in addition
to the contribution of the ladder method, this cost func-
tion further improves classification performance.

The cost function of a batch is made up of the two
elements described above:

C = C1 + αC2 (8)

where α is an hyper-parameter that is tuned in a cross-
validation procedure that is described below. (We can
assume without loss of generality that one of the coeffi-
cients of the likelihood score, the label frequency score
and the ladder score is 1.)

We tried to use another standard unsupervised cost
function that is based on minimizing the entropy of the
distribution obtained by the soft-max layer, thus encour-
aging the decision in the unlabeled data to focus on one
of the languages [19]:

Cent = −
1

m

n+m∑

t=n+1

∑

i

p(ỹ = i|xt) log p(ỹ = i|xt)

such that i ∈ {1, ..., k} ∪ {oos}. We tried computing
this score with different importance weights either on the
noise-free network or the noisy network. However, there
was not any significant performance gain using this cost
function.

4.2. A post processing step

The soft-max layer of the network provides a distribution
over the 51 possible outputs. The final decision is then
obtained by selecting the most probable label. Once the
predictions are made on the test data, we can measure the
ratio of the number of examples for which oos was pre-
dicted. If this ratio is below the pre-defined ratio, poos, we
can relabel more examples as oos until the expected ra-
tio is met. The candidate examples for relabeling are the
ones in which probability of the most probable language
is the smallest. If this ratio is above the pre-defined ra-
tio, poos, we can relabel fewer examples as oos until the
expected ratio is met. This relabeling is done by multi-
plying the predicted probability to be oos by a reduction
bias which gives other labels a higher likelihood of being
picked as the predicted label. In the experiment results we
show that this procedure indeed helps when using stan-
dard network training based only on the labeled data (i.e.
when α=0). However, there was no improvement when
this post-processing was applied on the Ladder Network
results or when α>0 in the standard network.

4.3. Parameter Tuning

We created a modified dataset for hyper parameters tun-
ing using only the labeled part of the training dataset. We
randomly selected 38 out 50 languages as the language-
set and considered the data of the remaining 12 languages
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Table 1: Progress-set scores for different models (pp
stands for post-processing).

Model α score oos ratio pp
baseline 0 32.667 0.09 29.128

0.15 31.538 0.18 31.795
Ladder 0 28.051 0.18 28.103

0.15 23.949 0.31 25.026

Table 2: Performance comparison of the Ladder and
baseline network on test subset for several partitions of
the 50 languages into 38 in-set and 12 out-of set.

Ladder #epocs baseline #epocs
1 19.1 680 24.0 74
2 18.3 887 22.8 112
3 20.9 961 29.1 99
4 20.7 839 27.2 71
5 16.4 772 23.7 54
av 19.1 25.3

as out-of-set. We took a subset of the 38×300 examples
as the labeled training set. We then used the remaining
labeled data to construct a development set and a test set
that both contained examples from all the 50 languages.
The development and test sets were constructed in a way
that all the 50 languages (either in-set or out-of-set) were
in the same proportion.

The process of creating a modified set can be repeated
many times, and each time we chose another set of lan-
guages to be out-of-set, thus giving each language an op-
portunity to be out-of-set.

The cross-validation described above was used to set
the hyper-parameters of the Ladder Network. The main
parameters were the number of layers, size of each layer
and the relative importance of each layer in the recon-
struction score. We also tuned the relative weights of the
score component C1 and C2.

4.4. Model Configuration

The network we implemented1 has an i-vector input of
dimension 400 which passes through four ReLU hidden
layers of size 500, 500, 500 and 100 and a final soft-max
output layer of 51 (or 39 when doing cross validation for
parameter tuning). In the encoding step a Gaussian noise
with standard deviation of σ = 0.5 was added to the input
data and to all intermediate hidden layers. Training was
done with mini-batches having a batch size of 1024. Note
that this size has a secondary effect through the loss func-
tion C2 which averages the predictions across the mini-
batch before computing the loss. The training consisted
of 1000 epoch iterations. The order of the samples was

1code available at https://github.com/udibr/LRE

shuffled before each iteration. It turned out that because
of the unsupervised learning the ladder method is insen-
sitive to the number of epochs and having between 800
to 2000 epoch iterations gave similar results. A direct
skip of information from the encoder to the decoder was
used only on the input layer using the Gaussian method
described in [9]. The L2 reconstruction error of the de-
noising layers compared with the noise-free network lay-
ers was assigned a weight of 1 for the input layer and the
first hidden layer and a weight of 0.3 for all other lay-
ers. The weights of C1 and C2 were set to 1 and 0.15
respectively.

Figure 2: Cost function score as a function of the number
of epochs on the cross validation dataset.

5. Experiments
5.1. NIST challenge results

We next report the results for several variants of the
method described above on the NIST 2015 Language
Recognition i-vector Challenge [6]. Each combination
of models and parameters was applied to the test set of
the challenge and submitted to the competition web-site.
According to the challenge rules, an unknown subset of
30% of the test samples was used to compute a score for
the progress-set and the results for the remaining 70% set
are not reported by the web-site. The performance score
is defined in Eq. (5) where a smaller number is better.
Table 1 shows the progress-set results we achieved for
different models and parameters on the competition web
site.
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We examined two training procedures: one with the
full ladder structure and one with a baseline variant where
we set the weight of the ladder reconstruction score to
zero. The baseline method is still based on a noisy-
forward step which, without the layer-reconstruction cost
function, turned out to be a regularized learning method
similar to dropout [14].

For each model (either baseline or Ladder) we tested
the results of using two variants of the training cost func-
tion (8). One variant (defined byα=0) was based only on
the likelihood score (6) computed on the labeled data. In
the second variant (defined by α=0.15) we also used the
cross entropy of the average probabilities (7) computed
on the unlabeled data. The optimal value of αwas chosen
using the cross-validation procedure on the labeled data
that was described above. Note that the Ladder Network
uses the unlabeled data for training even if α = 0. In
contrast, the baseline method ignores the unlabeled data
if α = 0. Table 1 shows that it is indeed beneficial to use
unlabeled data during training as well. The best results
were obtained by Ladder training applied to the cost func-
tion which besides a likelihood term also used the cross
entropy of the average probabilities. Table 1 reveals the
importance of the cost function propose in this study (7)
that combined with the Ladder network training method
yielded the best results.

We next examined the contribution of the post-
processing step described in Section 4.2. Table 1 also
shows the ratio of oos decisions in the test data submit-
ted to the challenge site. We tried to improve the results
by using the post-processing step (4.2) with a parameter,
poos = 0.23, for the oos ratio. The results are shown
in the rightmost column of Table 1. The post-processing
step only led to improvement in the baseline model and
only in the case of α = 0 where only the likelihood cost
function was in use. Note that in this case the training
step is only based on the labeled data. In all the other
cases the post-processing did not help.

5.2. Analysis

The ladder model exhibited superior regularization, as
was evident in the cross validation tests we made. Ta-
ble 2 shows the cross validation performance results for
the ladder and the baseline model (without the ladder re-
construction score). The score was defined in (5) where
the number of languages was set to be k = 38. Each
row of the table corresponds to a different split of the
50 languages into 38 in-set and 12 out-of-set languages.
Selecting different sets of languages to be in-set and out-
of-set can yield drastically different results. We therefore
repeated the process 5 times to allow for each language
to be out-of-set at least once.

Table 2 also reports the number of epochs that were
needed to get the best test results. In the baseline method
there was a problem of over-fitting and that required early

stopping to achieve best results. By contrast, the ladder
score imposes an aggressive regularization which avoids
the need for early stopping. Figure 2 shows the cost func-
tion that was minimized during training as a function of
the number of epochs. The cost function is plotted for
both the training data and the test data. It is clear that,
while in the baseline method the problem of overfitting
could not be avoided, the Ladder Network has no over-
fitting problems. This behavior is yet another advantage
of the Ladder Network training procedure in that we can
train the network up to local optimum without the risk of
overfitting.

To conclude, in this study we utilized the Ladder Net-
work technique for semi-supervised learning of a lan-
guage identification system. We showed that the Lad-
der Network provided an improved framework for inte-
grating unlabeled data into a supervised training scheme.
The Ladder Network also uses the unlabeled data in the
cost function optimized at the training step. This enabled
us to explicitly address out-of-set examples in part of the
training process. We also used a new cost function that
encourages the statistics of the predicted labels in the un-
labeled dataset to be similar to the label statistics of the
labeled training data. The joint contribution of the lad-
der training methods and this cost function provided a
significant reduction in classification errors of 15% (from
28.41 to 23.95) when applied to the NIST 2015 Language
Recognition Challenge.
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